Skip to main content

Phenologies of North American Grasslands and Grasses

  • Chapter
  • First Online:
Phenology: An Integrative Environmental Science

Abstract

Inquiry into the phenologies of grasslands and grasses in North America has progressed substantially in the past decade. Four themes of the recent phenological research are surveyed: (1) the role of exotic and invasive species in affecting grasslands phenology; (2) the role of water and belowground dynamics on phenologies; (3) how experimental manipulations of grasslands have affected constitutive phenologies; and (4) advances in the remote sensing of grasslands. The phyllochron concept used in ontogenetic studies of grass species is discussed in light of grasslands phenology and its link between daylength and thermal time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adair EC, Burke IC (2010) Plant phenology and life span influence soil pool dynamics: Bromus tectorum invasion of perennial C3–C4 grass communities. Plant Soil 335(1–2):255–269

    Article  CAS  Google Scholar 

  • Alcaraz-Segura D, Chuvieco E, Epstein HE, Kasischke ES, Trishchenko A (2010) Debating the greening vs. browning of the North American boreal forest: differences between satellite datasets. Glob Change Biol 16(2):760–770

    Article  Google Scholar 

  • Beck HE, McVicar TR, van Dijk AIJM, Schellekens J, de Jeu RAM, Bruijzeel LA (2011) Global evaluation of four AVHRR–NDVI data sets: intercomparison and assessment against Landsat imagery. Remote Sens Environ 115:2547–2563

    Article  Google Scholar 

  • Benedict HM (1941) Growth of some range grasses in reduced light intensities at Cheyenne, Wyoming. Bot Gaz 102:582–589

    Article  Google Scholar 

  • Bradley BA, Mustard JF (2005) Identifying land cover variability distinct from land cover change: cheatgrass in the Great Basin. Remote Sens Environ 94(2):204–213

    Article  Google Scholar 

  • Bradley BA, Mustard JF (2006) Characterizing the landscape dynamics of an invasive plant and risk of invasion using remote sensing. Ecol Appl 16:1132–1147

    Article  Google Scholar 

  • Bradley BA, Mustard JF (2008) Comparison of phenology trends by land cover class: a case study in the Great Basin, U.S.A. Glob Change Biol 14(2):334–346

    Article  Google Scholar 

  • Bradley BA, Jacob RW, Hermance JF, Mustard JF (2007) A curve-fitting technique to derive inter-annual phenologies from time series of noisy satellite data. Remote Sens Environ 106:137–145

    Article  Google Scholar 

  • Briggs JM, Knapp AK (1995) Interannual variability in primary production in tallgrass prairie: climate, soil moisture, topographic position, and fire as determinants of aboveground biomass. Am J Bot 82(8):1024–1030

    Article  Google Scholar 

  • Briggs JM, Rieck DR, Turner CL, Henebry GM, Goodin DG, Nellis MD (1997) Spatial and temporal patterns of vegetation in the Flint Hills. Trans Kans Acad Sci 100:10–20

    Article  Google Scholar 

  • Cayan DR, Kammerdiener SA, Dettinger MD, Caprio JM, Peterson DH (2001) Changes in the onset of spring in the western United States. Bull Am Meteorol Soc 82(3):399–415

    Article  Google Scholar 

  • Cleland EE, Chiariello NR, Loarie SR, Mooney HA, Field CB (2006) Diverse responses of phenology to global changes in a grassland ecosystem. PNAS 103(37):13740–13744

    Article  CAS  Google Scholar 

  • Cleland EE, Larios L, Suding KN (2012) Strengthening invasion filters to reassemble native plant communities: soil resources and phenological overlap. Restor Ecol early online. doi: 10.1111/j.1526-100X.2012.00896.x

  • Coffin DP, Lauenroth WK (1989) Disturbances and gap dynamics in a semiarid grassland: a landscape-level approach. Landsc Ecol 3(1):19–27

    Article  Google Scholar 

  • Craine JM, Towne EG, Nippert JB (2010) Climate controls on grass culm production over a quarter century in a tallgrass prairie. Ecology 91:2132–2140

    Article  Google Scholar 

  • Craine JM, Nippert JB, Elmore AJ, Skibbe AM, Hutchinson SL, Brunsell NA (2012a) Timing of climate variability and grassland productivity. PNAS 109(9):3401–3405

    Article  CAS  Google Scholar 

  • Craine JM, Wolkovish EM, Towne EG, Kembel SW (2012b) Flowering phenology as a functional trait in a tallgrass prairie. New Phytol 193:673–682

    Article  Google Scholar 

  • Davidson A, Csillag F (2001) The influence of vegetation index and spatial resolution on a two-date remote sensing derived relation to C4 species coverage. Remote Sens Environ 75:138–151

    Article  Google Scholar 

  • Davidson A, Csillag F (2003) A comparison of three approaches for predicting C4 species cover of northern mixed grass prairie. Remote Sens Environ 86:70–82

    Article  Google Scholar 

  • de Beurs KM, Henebry GM (2004) Land surface phenology, climatic variation, and institutional change: analyzing agricultural land cover change in Kazakhstan. Remote Sens Environ 89(4):497–509. doi:10.1016/j.rse.2003.11.006

    Article  Google Scholar 

  • de Beurs KM, Henebry GM (2005) A statistical framework for the analysis of long image time series. Int J Remote Sens 26(8):1551–1573

    Article  Google Scholar 

  • de Beurs KM, Henebry GM (2008) Northern annular mode effects on the land surface phenologies of northern Eurasia. J Clim 21:4257–4279

    Article  Google Scholar 

  • de Beurs KM, Henebry GM (2010) Spatio-temporal statistical methods for modeling land surface phenology. In: Hudson IL, Keatley MR (eds) Phenological research: methods for environmental and climate change analysis. Springer, New York

    Google Scholar 

  • Dukes JS, Chiariello NR, Cleland EE, Moore LA, Shaw MR, Thayer S, Tobeck T, Mooney HA, Field CB (2005) Responses of grassland production to single and multiple global environmental changes. PLoS Biol 3(10):e319

    Article  Google Scholar 

  • Dunne JA, Harte J, Taylor KJ (2003) Subalpine meadow flowering phenology responses to climate change: integrating experimental and gradient methods. Ecol Monogr 73(1):69–86

    Article  Google Scholar 

  • Enloe SF, DiTomaso JM, Orloff SB, Drake DJ (2004) Soil water dynamics differ among rangeland plant communities dominated by yellow starthistle (Centaurea solstitialis), annual grasses, or perennial grasses. Weed Sci 52(6):929–935

    Article  CAS  Google Scholar 

  • Fargione J, Tilman D (2005) Niche differences in phenology and rooting depth promote coexistence with a dominant C4 bunchgrass. Oecologia 143(4):598–606

    Article  Google Scholar 

  • Fay PA, Carlisle JD, Knapp AK, Blair JM, Collins SL (2000) Altering rainfall timing and quantity in a mesic grassland ecosystem: design and performance of rainfall manipulation shelters. Ecosystems 3(3):308–319

    Article  Google Scholar 

  • Fay PA, Blair JM, Smith MD, Nippert JB, Carlisle JD, Knapp AK (2011) Relative effects of precipitation variability and warming on tallgrass prairie ecosystem function. Biogeosciences 8:3053–3068

    Article  CAS  Google Scholar 

  • Flanagan LB (2009) Phenology of plant production in the northwestern Great Plains: relationships with carbon isotope discrimination, net ecosystem productivity and ecosystem respiration. In: Noormets A (ed) Phenology of ecosystem processes. Springer, New York

    Google Scholar 

  • Foody GM, Dash J (2010) Estimating the relative abundance of C3 and C4 grasses in the Great Plains from multi-temporal MTCI data: issues of compositing period and spatial generalizability. Int J Remote Sens 31(2):351–362

    Article  Google Scholar 

  • Fournier C, Durand JL, Ljutovac S, Schäufele R, Gastal F, Andrieu B (2005) A functiona-structural model of elongation of the grass leaf and its relationships with the phyllochron. New Phytol 166:881–894

    Article  CAS  Google Scholar 

  • Goergen EM, Leger EA, Espeland EK (2011) Native perennial grasses show evolutionary response to Bromus tectorum (Cheatgrass) invasion. PLoS One 6(3):e18145

    Article  CAS  Google Scholar 

  • Goodin DG, Henebry GM (1997) Monitoring ecological disturbance in tallgrass prairie using seasonal NDVI trajectories and a discriminant function mixture model. Remote Sens Environ 61:270–278

    Article  Google Scholar 

  • Henebry GM (1993) Detecting change in grasslands using measures of spatial dependence with Landsat TM data. Remote Sens Environ 46:223–234

    Article  Google Scholar 

  • Henebry GM (2003) Grasslands of the north American Great Plains. In: Schwartz MD (ed) Phenology: an integrative environmental science. Kluwer, New York

    Google Scholar 

  • Henebry GM, de Beurs KM (2013) Remote sensing of land surface phenology: A prospectus. In: Schwartz MD (ed) Phenology: an integrative environmental science, 2nd edn. Elsevier, Dordrecht

    Google Scholar 

  • Hermance JF, Jacob RW, Bradley BA, Mustard JF (2007) Extracting phenological signals from multi-year AVHRR NDVI time series: framework for applying high-order annual splines with roughness damping. IEEE Trans Geosci Remote Sens 45:3264–3276

    Article  Google Scholar 

  • Huang C-Y, Geiger EL (2008) Climate anomalies provide opportunities for large-scale mapping of non-native plant abundance in desert grasslands. Divers Distrib 14(5):875–884

    Article  Google Scholar 

  • Huang C, Geiger EL, Van Leeuwen WJD, Marsh SE (2009) Discrimination of invaded and native species sites in a semi-desert grassland using MODIS multi‐temporal data. Int J Remote Sens 30(4):897–917

    Article  Google Scholar 

  • Hudson IL, Keatley MR (2010) Phenological research: methods for environmental and climate change analysis. Springer, New York

    Google Scholar 

  • Itoh Y, Sano Y (2006) Phyllochron dynamics under controlled environments in rice (Oryza sativa L.). Euphytica 150:87–95

    Article  CAS  Google Scholar 

  • Itoh Y, Shimizu H (2012) Phyllochron dynamics during the course of late shoot development might be affected by reproductive development in rice (Oryza sativa L.). Dev Genes Evol 222:341–350

    Article  CAS  Google Scholar 

  • Kathuroju N, White MA, Symanzik J, Schwartz MD, Powell JA, Nemani RR (2007) On the use of the advanced very high resolution radiometer for development of prognostic land surface phenology models. Ecol Model 201(1):144–156

    Article  Google Scholar 

  • Knapp AK, Seastedt TR (1986) Detritus accumulation limits productivity of tallgrass prairie. BioScience 36(10):662–668

    Article  Google Scholar 

  • Knapp AK, Smith MD (2001) Variation among biomes in temporal dynamics of aboveground primary production. Science 291:481–484

    Article  CAS  Google Scholar 

  • Knapp AK, Briggs JM, Hartnett DC, Collins SL (1998) Grassland dynamics: long-term ecological research in Tallgrass Prairie. Oxford University Press, New York

    Google Scholar 

  • Knapp AK, Smith MD, Collins SL, Zambatis N, Peel M, Emery S, Wojdak J, Horner-Devine MC, Biggs H, Kruger J, Andelman SJ (2004) Generality in ecology: testing North American grassland rules in South African savannas. Front Ecol Environ 2:483–491

    Article  Google Scholar 

  • McMaster GS (1997) Phenology, development, and growth of the wheat (Triticum aestivum L.) shoot apex: a review. Adv Agron 59:63–118

    Article  Google Scholar 

  • McMaster GS (2005) Phytomers, phyllochrons, phenology and temperate cereal development. J Agric Sci 143:137–150

    Article  Google Scholar 

  • McMaster GS, Smika DE (1988) Estimation and evaluation of winter wheat phenology in the central Great Plains. Agric For Meteorol 43(1):1–18

    Article  Google Scholar 

  • McMaster GS, Wilhelm WW (1998) Is soil temperature better than air temperature for predicting winter wheat phenology? Agron J 90:602–607

    Article  Google Scholar 

  • McMillan C (1956a) Nature of the plant community. I. Uniform garden and light period studies of five grass taxa in Nebraska. Ecology 37:330–340

    Article  Google Scholar 

  • McMillan C (1956b) Nature of the plant community. II. Variation in flowering behavior within populations of Andropogon scoparius. Ecology 43:429–436

    Google Scholar 

  • McMillan C (1957) Nature of the plant community. III. Flowering behavior within two grassland communities under reciprocal transplanting. Am J Bot 44:144–153

    Article  Google Scholar 

  • McMillan C (1959a) Nature of the plant community. V. Variation within the true prairie community-type. Am J Bot 46:418–424

    Article  Google Scholar 

  • McMillan C (1959b) The role of ecotypic variation in the distribution of the central grassland of North America. Ecol Monogr 29:285–308

    Article  Google Scholar 

  • McMillan C (1960) Ecotypes and community function. Am Nat 94:245–255

    Article  Google Scholar 

  • Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P, Braslavská O, Briede S, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl Å, Defila C, Donnelly A, Filella Y, Jatczak K, Måge F, Mestre A, Nordli Ø, Peñuelas J, Pirinen P, Remišová V, Scheifinger H, Striz M, Susnik A, Van Vliet AJH, Wielgolaski F-E, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Glob Change Biol 12:1969–1976. doi:10.1111/J.1365-2486.2006.01193.X

    Article  Google Scholar 

  • Miyamoto N, Goto Y, Matsui M, Ukai Y, Morita M, Nemoto K (2004) Quantitative trait loci for phyllochron and tillering in rice. Theor Appl Genet 109:700–706

    Article  CAS  Google Scholar 

  • Morisette JT, Richardson AD, Knapp AK, Fisher JI, Graham E, Abatzoglou J, Wilson BE, Breshears DD, Henebry GM, Hanes JM, Liang L (2008) Unlocking the rhythm of the seasons in the face of global change: challenges and opportunities for phenological research in the 21st century. Front Ecol Environ 5(7):253–260. doi:10.1890/070217

    Google Scholar 

  • Nord EA, Lynch JP (2009) Plant phenology: a critical controller of soil resource acquisition. J Exp Bot 60(7):1927–1937

    Article  CAS  Google Scholar 

  • Obrist D, Verburg PSJ, Young MH, Coleman JS, Schorran DE, Arnone JA III (2003) Quantifying the effects of phenology on ecosystem evapotranspiration in planted grassland mesocosms using EcoCELL technology. Agric For Meteorol 118(3–4):173–183

    Article  Google Scholar 

  • Olmsted CE (1943) Growth and development in range grasses. III. Photoperiodic responses in the genus Bouteloua. Bot Gaz 105:165–181

    Article  Google Scholar 

  • Olmsted CE (1944) Growth and development in range grasses. IV. Photoperiodic responses in twelve geographic strains of side-oats gramma. Bot Gaz 106:46–74

    Article  Google Scholar 

  • Olmsted CE (1945) Growth and development in range grasses. V. Photoperiodic responses of clonal divisions of three latitudinal strains of side-oats gramma. Bot Gaz 106:382–401

    Article  Google Scholar 

  • Parker SS, Schimel JP (2010) Invasive grasses increase nitrogen availability in California grassland soils. Invasive Plant Sci Manag 3(1):40–47

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  Google Scholar 

  • Peichl M, Sonnentag O, Wohlfahrt G, Flanagan LB, Baldocchi DD, Kiely G, Galvagno M, Gianelle D, Marcolla B, Pio C, Migliavacca M, Jones MB, Saunders M (2013) Convergence of potential net ecosystem production among contrasting C3 grasslands. Ecol Lett 16(4):502–512. doi:10.1111/ele.12075

    Article  Google Scholar 

  • Peterson EB (2005) Estimating cover of an invasive grass (Bromus tectorum) using tobit regression and phenology derived from two dates of Landsat ETM + data. Int J Remote Sens 26(12):2491–2507

    Article  Google Scholar 

  • Prater MR, DeLucia EH (2006) Non-native grasses alter evapotranspiration and energy balance in Great Basin sagebrush communities. Agric For Meteorol 139(1–2):154–163

    Article  Google Scholar 

  • Rice EL (1950) Growth and floral development of five species of range grass in central Oklahoma. Bot Gaz 111:361–377

    Article  Google Scholar 

  • Richardson AD, Keenan TF, Migliavacca M, Ryu Y, Sonnentag O, Toomey M (2013) Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric For Meteorol 169:156–173. doi:10.1016/j.agrformet.2012.09.012

    Article  Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421(6918):57–60

    Article  CAS  Google Scholar 

  • Rosenzweig C, Casassa G, Karoly DJ, Imeson A, Liu C, Menzel A, Rawlins S, Root TL, Seguin B, Tryjanowski P (2007) Assessment of observed changes and responses in natural and managed systems. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York

    Google Scholar 

  • Ryu Y, Baldocchi DD, Ma S, Hehn T (2008) Interannual variability of evapotranspiration and energy exchange over an annual grassland in California. J Geophys Res 113:D09104

    Article  Google Scholar 

  • Schwartz MD (1994) Monitoring global change with phenology: the case of the spring green wave. Int J Biometeorol 38(1):18–22

    Article  Google Scholar 

  • Schwartz MD (1998) Green-wave phenology. Nature 394(6696):839–840

    Article  CAS  Google Scholar 

  • Schwartz MD, Ahas R, Aasa A (2006) Onset of spring starting earlier across the northern Hemisphere. Glob Change Biol 12:343–351

    Article  Google Scholar 

  • Sherry RA, Zhou X, Gu S, Arnone JA III, Schimel DS, Verburg PS, Wallace LL, Luo Y (2007) Divergence of reproductive phenology under climate warming. PNAS 104(1):198–202

    Article  CAS  Google Scholar 

  • Steinaker DF, Wilson SD (2008) Phenology of fine roots and leaves in forest and grassland. J Ecol 96(6):1222–1229

    Article  Google Scholar 

  • Steinaker DF, Wilson SD, Peltzer DA (2010) Asynchronicity in root and shoot phenology in grasses and woody plants. Glob Change Biol 16(8):2242–2251

    Google Scholar 

  • Suttle KB, Thomsen MA, Power ME (2007) Species interactions reverse grassland responses to changing climate. Science 315(5812):640–642

    Article  CAS  Google Scholar 

  • Tieszen LL, Reed BC, Bliss NB, Wylie BK, DeJong DD (1997) NDVI, C3 and C4 production and distributions in Great Plains grassland land cover classes. Ecol Appl 7:59–78

    Google Scholar 

  • Villegas JC, Breshears DD, Zou CB, Royer PD (2010) Seasonally pulsed heterogeneity in microclimate: phenology and cover effects along deciduous grassland-forest. Vadose Zone J 9(3):537–547

    Article  Google Scholar 

  • Wang C, Jamison BE, Spicci AA (2010) Trajectory-based warm season grassland mapping in Missouri prairies with multi-temporal ASTER imagery. Remote Sens Environ 114(3):531–539

    Article  Google Scholar 

  • Weaver JE (1954) North American Prairie. Johnsen Publishing, Lincoln

    Google Scholar 

  • Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier spring increases western U.S. forest wildfire activity. Science 313:940–943

    Article  CAS  Google Scholar 

  • Wilhelm WW, McMaster GS (1995) Importance of the phyllochron in studying development and growth in grasses. Crop Sci 35:1–3

    Article  Google Scholar 

  • Winslow JC, Hunt ER Jr, Piper SC (2003) A phenological model of the global C3 and C4 grass distribution with application to the United States Great Plains under a VEMAP climatic change scenario, Ecological Modelling 163:153–173

    Google Scholar 

  • Wolkovich EM, Cleland EE (2011) The phenology of plant invasions: a community ecology perspective. Front Ecol Environ 9:287–294

    Article  Google Scholar 

  • Wolkovich EM, Cook BI, Allen JM, Crimmins TM, Betancourt JL, Travers SE, Pau S, Regetz J, Davies TJ, Kraft NJB, Ault TR, Bolmgren K, Mazer SJ, McCabe GJ, McGill BJ, Parmesan C, Salamin N, Schwartz MD, Cleland EE (2012) Warming experiments underpredict plant phenological responses to climate change. Nature 485:494–497

    CAS  Google Scholar 

  • Xu L, Baldocchi DD (2004) Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California. Agric For Meteorol 123(1–2):79–96

    Article  Google Scholar 

  • Zavaleta ES, Shaw MR, Chiariello NR, Thomas BD, Cleland EE, Field CB, Mooney HA (2003a) Grassland responses to three years of elevated temperature, CO2, precipitation, and N deposition. Ecol Monogr 73:585–604

    Article  Google Scholar 

  • Zavaleta ES, Thomas BD, Chiariello NR, Asner GP, Shaw MR, Field CB (2003b) Plants reverse warming effect on ecosystem water balance. PNAS 100(17):9892–9893

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research was supported in part by NASA grant NNX12AM89G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey M. Henebry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Henebry, G.M. (2013). Phenologies of North American Grasslands and Grasses. In: Schwartz, M. (eds) Phenology: An Integrative Environmental Science. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6925-0_11

Download citation

Publish with us

Policies and ethics