Skip to main content

Was Ophiacodon (Synapsida, Eupelycosauria) a Swimmer? A Test Using Vertebral Dimensions

  • Chapter
  • First Online:
Early Evolutionary History of the Synapsida

Abstract

Ophiacodon, a Permian synapsid, has been hypothesized to be semi-aquatic. This interpretation is based on a range of evidence, including observations of histology, phalangeal morphology, dentition, and taphonomy. However, many of these data are inconclusive or have been reinterpreted. Here we investigate whether the morphology of the axial skeleton in Ophiacodon displays specializations for aquatic locomotion. Qualitative and quantitative comparisons of Ophiacodon to extant terrestrial and semi-aquatic tetrapods demonstrate that the distribution of centrum lengths in its vertebral column is similar in some ways to those of extant semi-aquatic reptiles. However, other basal synapsids that are widely regarded as terrestrial show comparable patterns, and the correlation between swimming style and vertebral morphology in extant semi-aquatic tetrapods may be weaker than previously thought. Therefore, vertebral proportions provide little support for a semi-aquatic lifestyle in Ophiacodon. Given that most lines of evidence are equivocal at best, we suggest that future studies that consider the ecology of Ophiacodon use a terrestrial lifestyle as a null hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Berman, D. S, Reisz, R. R., Bolt, J. R., & Scott, D. (1995). The cranial anatomy and relationships of the synapsid Varanosaurus (Eupelycosauria: Ophiacodontidae) from the early Permian of Texas and Oklahoma. Annals of Carnegie Museum, 64, 99–133.

    Google Scholar 

  • Berman, D. S, Henrici, A. C., Sumida, S. S., & Martens, T. (2000). Redescription of Seymouria sanjuanensis (Seymouriamorpha) from the Lower Permian of Germany based on complete, mature specimens with a discussion of the paleoecology of the Bromacker Locality Assemblage. Journal of Vertebrate Paleontology, 20, 253–268.

    Article  Google Scholar 

  • Berman, D. S, Reisz, R. R., Martens, T., & Henrici, A. C. (2001). A new species of Dimetrodon (Synapsida: Sphenacodontidae) from the Lower Permian of Germany records first occurrence of genus outside of North America. Canadian Journal of Earth Sciences, 38, 80–812.

    Article  Google Scholar 

  • Berman, D. S, Henrici, A. C., Kissel, R. A., Sumida, S. S., & Martens, T. (2004). A new diadectid (Diadectomorpha), Orobates pabsti, from the Early Permian of central Germany. Bulletin of Carnegie Museum of Natural History, 35, 1–36.

    Article  Google Scholar 

  • Berman, D. S, Henrici, A. C., Sumida, S. S., Martens, T., & Pelletier, V. (2013). First European record of a varanodontine (Synapsida: Varanopidae): Member of a unique Early Permian upland ecosystem, Tambach Basin, central Germany. In C. F. Kammerer, K. D. Angielczyk, & J. Fröbisch (Eds.), Early evolutionary history of the Synapsida (pp. 69–86). Dordrecht: Springer.

    Google Scholar 

  • Braziatis, P. (1973). The identification of living crocodilians. Zoologica, 58, 59–101.

    Google Scholar 

  • Brinkman, D. (1988). Size-independent criteria for estimating relative age in Ophiacodon and Dimetrodon (Reptilia, Pelycosauria) from the Admiral and Lower Belle Plains Formations of West-Central Texas. Journal of Vertebrate Paleontology, 8, 172–180.

    Article  Google Scholar 

  • Buchholtz, E. A. (1998). Implications of vertebral morphology for locomotor evolution in early Cetacea. In J. G. M. Thewissen (Ed.), The emergence of whales: The evolutionary patterns in the origin of Cetacea (pp. 325–352). New York: Plenum Press.

    Chapter  Google Scholar 

  • Buchholtz, E. A. (2001a). Swimming styles in Jurassic ichthyosaurs. Journal of Vertebrate Paleontology, 21, 61–73.

    Article  Google Scholar 

  • Buchholtz, E. A. (2001b). Vertebral osteology and swimming style in living and fossil whales (Order: Cetacea). Journal of Zoology, 253, 175–190.

    Article  Google Scholar 

  • Buchholtz, E. A., & Schur, S. A. (2004). Vertebral osteology in Delphinidae (Cetacea). Zoological Journal of the Linnean Society, 140, 383–401.

    Article  Google Scholar 

  • Buchholtz, E. A., Wolkovitch, E. M., & Cleary, R. J. (2005). Vertebral osteology and complexity in Lagenorhynchus acutus (Delphinidae) with comparison to other delphinoid genera. Marine Mammal Science, 21, 411–428.

    Article  Google Scholar 

  • Buchholtz, E. A., Booth, A. C., & Webbink, K. E. (2007). Vertebral anatomy in the Florida Manatee, Trichechus manatus latirostris: A developmental and evolutionary analysis. The Anatomical Record, 290, 624–637.

    Article  Google Scholar 

  • Canoville, A., & Laurin, M. (2010). Evolution of humeral microanatomy and lifestyle in amniotes, an some comments on palaeobiological inferences. Biological Journal of the Linnean Society, 100, 384–406.

    Article  Google Scholar 

  • Carpenter, K. (2009). Role of lateral body bending in crocodylian track making. Ichnos, 16, 202–207.

    Article  Google Scholar 

  • Carroll, R. L. (1986). The skeletal anatomy and some aspects of the physiology of primitive reptiles. In N. Hotton, P. D. MacLean, J. J. Roth, & E. C. Roth (Eds.), The ecology and biology of mammal-like reptiles (pp. 25–45). Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • Case, E. C. (1907). Revision of the Pelycosauria of North America. Washington, DC: Carnegie Institution of Washington.

    Book  Google Scholar 

  • Case, E. C. (1915). The Permo-Carboniferous red beds of North America and their vertebrate fauna. Washington, DC: Carnegie Institution of Washington.

    Book  Google Scholar 

  • Cope, E. D. (1878). Descriptions of extinct Batrachia and Reptilia from the Permian formation of Texas. Proceedings of the American Philosophical Society, 17, 505–530.

    Google Scholar 

  • de Ricqlès, A. (1974). Recherches paléohistologiques sur les os longs des tétrapodes. IV—éothériodontes et pélycosaures. Annales de Paléontologie (Vertébratés), 60, 3–39.

    Google Scholar 

  • de Ricqlès, A. (1989). Les méchanismes hétérochroniques dans le retour des tétrapodes au Milieu aquatique. Geobios Mémoir Spécial, 12, 337–348.

    Article  Google Scholar 

  • de Ricqlès, A., & de Buffrénil, V. (2001). Bone histology, heterochronies and the return of tetrapods to life in water. In J. M. Mazin & V. de Buffrénil (Eds.), Secondary adaptation of tetrapods to life in water (pp. 289–310). München: Verlag Dr. Friedrich Pfeil.

    Google Scholar 

  • Eberth, D. A., & Miall, A. D. (1991). Stratigraphy, sedimentology and evolution of a vertebrate-bearing, braided to anastomosed fluvial system, Cutler Formation (Permian-Pennsylvanian), north-central New Mexico. Sedimentary Geology, 72, 225–252.

    Article  Google Scholar 

  • Eberth, D. A., & Berman, D. S (1993). Stratigraphy, sedimentology, and vertebrate paleoecology of the Cutler Formation redbeds (Pennsylvanian-Permian) of north central New Mexico. In S. G. Lucas & J. Zidek (Eds.) Vertebrate Paleontology in New Mexico (pp. 33–48). New Mexico Museum of Natural History and Science 2.

    Google Scholar 

  • Eberth, D. A., Berman, D. S, Sumida, S. S., & Hopf, H. (2000). Lower Permian terrestrial paleoenvironments and vertebrate paleoecology of the Tambach Basin (Thuringia, central Germany): The upland Holy Grail. Palaios, 15, 293–313.

    Article  Google Scholar 

  • Enlow, D. H., & Brown, S. O. (1957). A comparative histological study of fossil and recent bone tissues. Part II. Texas Journal of Science, 9, 186–214.

    Google Scholar 

  • Evans, D. C., Maddin, H. C., & Reisz, R. R. (2009). A re-evaluation of sphenacodontid synapsid material from the Lower Permian fissure fills near Richards Spur, Oklahoma. Palaeontology, 52, 219–227.

    Article  Google Scholar 

  • Fish, F. E. (1984). Kinematics of undulatory swimming in the American Alligator. Copeia, 4, 839–843.

    Article  Google Scholar 

  • Fish, F. E. (1993). Comparison of swimming kinematics in terrestrial and semiaquatic opossums. Journal of Mammalogy, 74, 275–284.

    Article  Google Scholar 

  • Fish, F. E. (1994). Association of propulsive swimming mode with behavior in river otters (Lutra canadensis). Journal of Mammalogy, 75, 989–997.

    Article  Google Scholar 

  • Fish, F. E. (1996). Transitions from drag-based to lift-based propulsion in mammalian aquatic swimming. American Zoologist, 36, 628–641.

    Google Scholar 

  • Fish, F. E. (2001). A mechanism for evolutionary transition in swimming mode by mammals. In J. M. Mazin & V. de Buffrénil (Eds.), Secondary adaptation of tetrapods to life in water (pp. 261–287). München: Verlag Dr. Friedrich Pfeil.

    Google Scholar 

  • Germain, D., & Laurin, M. (2005). Microanatomy of the radius and lifestyle in amniotes (Vertebrata, Tetrapoda). Zoologica Scripta, 34, 335–350.

    Article  Google Scholar 

  • Gingerich, P. D. (1998). Paleobiological perspectives on Mesonychia, Archaeoceti, and the origin of whales. In J. G. M. Thewissen (Ed.), The emergence of whales: The evolutionary patterns in the origin of Cetacea (pp. 423–449). New York: Plenum Press.

    Chapter  Google Scholar 

  • Gingerich, P. D. (2003). Land-to-sea transition in early whales: Evolution of Eocene Archaeoceti (Cetacea) in relation to skeletal proportions and locomotion of living semiaquatic mammals. Paleobiology, 29, 429–454.

    Article  Google Scholar 

  • Girondot, M., & Laurin, M. (2003). Bone profiler: A tool to quantify, model, and statistically compare bone-section compactness. Journal of Vertebrate Paleontology, 23, 458–461.

    Article  Google Scholar 

  • Gould, S. J. (1965). Evolutionary patterns in pelycosaurian reptiles: A factor-analytic study. Evolution, 21, 385–401.

    Article  Google Scholar 

  • Hentz, T. F. (1988). Lithostratigraphy and paleoenvironments of upper Paleozoic continental red beds, north-central Texas: Bowie (new) and Wichita (revised) groups. University of Texas at Austin Bureau of Economic Geology Report of Investigations, 170, 1–55.

    Google Scholar 

  • Hentz, T. F. (1989). Depositional environments of the Early Permian coastal plain, north-cental Texas: A synopsis. In R. W. Hook (Ed.), Permo-Carboniferous vetebrate paleontology, lithostratigraphy, and depositional environments of North-Central Texas (pp. 22–39). 49th Annual Meeting of the Society of Vertebrate Paleontology, Field Trip Guidebook 2.

    Google Scholar 

  • Houssaye, A. (2009). “Pachyostosis” in aquatic amniotes: A review. Integrative Zoology, 4, 325–340.

    Article  Google Scholar 

  • Hunt, A. P., & Lucas, S. G. (1998). Vertebrate tracks and the myth of the belly-dragging, tail-dragging tetrapods of the late Paleozoic. In S. G. Lucas, J. W. Estep, & J. M. Hoffer (Eds.), Permian stratigraphy and paleontology of the Robledo Mountains, New Mexico (pp. 67–69). New Mexico Museum of Natural History and Science Bulletin, 12.

    Google Scholar 

  • Jasinoski, S. C., & Chinsamy-Turan, A. (2012). Biological inferences of the cranial microstructure of the dicynodonts Oudenodon and Lystrosaurus. In A. Chinsamy-Turan (Ed.), The Forerunners of mammals: Radiation, histology, biology (pp. 149–176). Bloomington: Indiana University Press.

    Google Scholar 

  • Jasinoski, S. C., Rayfield, E. J., & Chinsamy, A. (2009). Comparative feeding biomechanics of Lystrosaurus and the generalized dicynodont Oudenodon. Anatomical Record, 292, 862–874.

    Article  Google Scholar 

  • Jasinoski, S. C., Rayfield, E. J., & Chinsamy, A. (2010a). Functional implications of dicynodont cranial suture morphology. Journal of Morphology, 271, 705–728.

    Google Scholar 

  • Jasinoski, S. C., Rayfield, E. J., & Chinsamy, A. (2010b). Mechanics of the scarf premaxilla-nasal suture in the snout of Lystrosaurus. Journal of Vertebrate Paleontology, 30, 1283–1288.

    Article  Google Scholar 

  • Jasinoski, S. C., Cluver, M. J., Chinsamy, A., & Reddy, B. D. (2013). Anatomical plasticity in the snout of Lystrosaurus. In C. F. Kammerer, K. D. Angielczyk, & J. Fröbisch (Eds.), Early evolutionary history of the Synapsida (pp. 139–149). Dordrecht: Springer.

    Google Scholar 

  • Jenkins, I., Thomason, J. J., & Norman, D. B. (2002). Primates and engineering principles: Applications to craniodental mechanisms in ancient terrestrial predators. Senckenbergiana Lethaea, 82, 223–240.

    Article  Google Scholar 

  • Kemp, T. S. (1982). Mammal-like reptiles and the origin of mammals. London: Academic Press.

    Google Scholar 

  • Kemp, T. S. (2005). The origin and evolution of mammals. Oxford: Oxford University Press.

    Google Scholar 

  • Kenyon, K. W. (1981). Sea Otter, Enhydra lutra (Linnaeus, 1758). In S. H. Ridgway & R. J. Harrison (Eds.), Handbook of marine mammals (Vol. 1, pp. 209–223). London: Academic Press.

    Google Scholar 

  • Kriloff, A., Germain, D., Canoville, A., Vincent, P., Sache, M., & Laurin, M. (2008). Evolution of bone microanatomy of the tetrapod tibia and its use in palaeobiological inference. Journal of Evolutionary Biology, 21, 807–826.

    Article  Google Scholar 

  • Laurin, M., Girondot, M., & Loth, M.-M. (2004). The evolution of long bone microstructure and lifestyle in lissamphibians. Paleobiology, 30, 589–613.

    Article  Google Scholar 

  • Madar, S. I. (1998). Structural adaptations of early archaeocete long bones. In J. G. M. Thewissen (Ed.), The emergence of whales: The evolutionary patterns in the origin of Cetacea (pp. 353–377). New York: Plenum Press.

    Chapter  Google Scholar 

  • Maddin, H. C., & Reisz, R. R. (2007). The morphology of the terminal phalanges in Permo-Carboniferous synapids: An evolutionary perspective. Canadian Journal of Earth Sciences, 44, 267–274.

    Article  Google Scholar 

  • Maddin, H. C., Evans, D. C., & Reisz, R. R. (2006). An Early Permian varanodontine varanopid (Synapsida: Eupelycosauria) from the Richards Spur locality of Oklahoma. Journal of Vertebrate Paleontology, 26, 957–966.

    Article  Google Scholar 

  • Marsh, O. C. (1878). Notice of new fossil reptiles. American Journal of Science, 15, 409–411.

    Article  Google Scholar 

  • Martens, T., Berman, D. S, Henrici, A. C., & Sumida, S. S. (2005). The Bromacker Quarry—the most important locality of Lower Permian terrestrial vertebrate fossils outside of North America. In S. G. Lucas & K. E. Zeigler (Eds.), The nonmarine Permian (pp. 67–69). New Mexico Museum of Natural History and Science Bulletin, 30.

    Google Scholar 

  • Massare, J. A. (1987). Tooth morphology and prey preference of Mesozoic marine reptiles. Journal of Vertebrate Paleontology, 7, 121–137.

    Article  Google Scholar 

  • McHenry, C. R., Clausen, P. D., Daniel, W. J. T., Meers, M. B., & Pendharkar, A. (2006). Biomechanics of the rostrum in crocodilians: A comparative analysis using finite element modeling. The Anatomical Record Part A, 288A, 827–849.

    Article  Google Scholar 

  • McShea, D. W. (1992). A metric for the study of evolutionary trends in the complexity of serial structures. Biological Journal of the Linnean Society, 45, 39–55.

    Article  Google Scholar 

  • McShea, D. W. (1993). Evolutionary change in the morphological complexity of the mammalian vertebral column. Evolution, 47, 730–740.

    Article  Google Scholar 

  • Nakajima, Y. (2010). Evaluating the utility of limb bone internal structure as an indicator for aquatic adaptation of Testudines. Abstract from the 2010 Annual Symposium of Vertebrate Palaeontology and Comparative Anatomy, Cambridge. http://www.svpca.org/general/pages/abstractPage.php?i=1540&r=talksAndPosters.php&y=2010.

  • Northover, J., Rybczynski, N., & Schroder-Adams, C. (2010). Evidence for correlated evolution between long bone compactness, swimming behavior and body mass in Arctoidea (Mammalia: Carnivora). Program and Abstracts, Society of Vertebrate Paleontology Annual Meeting, Pittsburgh, Pennsylvania, 149A.

    Google Scholar 

  • Olson, E. C. (1941). New specimens of Permian vertebrates in Walker Museum. Journal of Geology, 49, 753–763.

    Article  Google Scholar 

  • Olson, E. C. (1952). The evolution of a Permian vertebrate chronofauna. Evolution, 6, 181–196.

    Article  Google Scholar 

  • Olson, E. C. (1961). The food chain and the origin of mammals. Koninklijke Vlaamse Academie voor Wetenschappen, Letteren en Schone Kunsten van Belgie: Klasse der Wetenschappen, 1961, 97–116.

    Google Scholar 

  • Olson, E. C. (1962). Late Permian terrestrial vertebrates, U.S.A. and U.S.S.R. Transactions of the American Philosophical Society, New Series, 52, 1–224.

    Article  Google Scholar 

  • Olson, E. C. (1966). Community evolution and the origin of mammals. Ecology, 47, 291–302.

    Article  Google Scholar 

  • Olson, E. C. (1968). The family Caseidae. Fieldiana: Geology, 17, 225–349.

    Google Scholar 

  • Olson, E. C. (1977). Permian lake faunas: A study in coevolution. Journal of the Palaeontological Society of India, 20, 146–163.

    Google Scholar 

  • Olson, E. C. (1983). Coevolution or coadaptation? Permo-Carboniferous vertebrate chronofauna. In M. H. Nitecki (Ed.), Coevolution (pp. 307–338). Chicago: University of Chicago Press.

    Google Scholar 

  • Olson, E. C. (1985a). Permo-Carboniferous vertebrate communities. In J. T. Dutro & H. W. Pfefferkorn (Eds.), Neuvième Congrès International de Stratigraphie et de Géologie du Carbonifère. Compte Rendu 5: Paleontology, Paleoecology, Paleogeography (pp. 331–345). Carbondale: Southern Illinois University Press.

    Google Scholar 

  • Olson, E. C. (1985b). Nonmarine vertebrates and late Paleozoic climates. In J. T. Dutro & H. W. Pfefferkorn (Eds.), Neuvième Congrès International de Stratigraphie et de Géologie du Carbonifère. Compte Rendu 5: Paleontology, Paleoecology, Paleogeography (pp. 403–414). Carbondale: Southern Illinois University Press.

    Google Scholar 

  • Panko, L. J. (2001). Evolution and functional morphology of the axial skeleton in the Synapsida. Unpublished Ph.D. dissertation, University of Chicago.

    Google Scholar 

  • Paton, R. L. (1974). Lower Permian pelycosaurs from the English midlands. Palaeontology, 17, 541–552.

    Google Scholar 

  • Pierce, S. E., Clack, J. A., & Hutchinson, J. R. (2011). Comparative axial morphology in pinnipeds and its correlation with aquatic locomotory behaviour. Journal of Anatomy, 219, 502–514.

    Article  Google Scholar 

  • Rayfield, E. J., & Milner, A. C. (2008). Establishing a framework for archosaur cranial mechanics. Paleobiology, 34, 494–515.

    Article  Google Scholar 

  • Rayfield, E. J., Milner, A. C., Xuan, V. B., & Young, P. G. (2007). Functional morphology of spinosaur ‘crocodile mimic’ dinosaurs. Journal of Vertebrate Paleontology, 27, 892–901.

    Article  Google Scholar 

  • Reisz, R. R. (1986). Pelycosauria. In P. Wellnhofer (Ed.), Handbuch der Paläoherpetologie (Vol. 17A). Stuttgart: Gustav Fischer Verlag.

    Google Scholar 

  • Reisz, R. R. (2005). Oromycter, a new caseid from the Lower Permian of Oklahoma. Journal of Vertebrate Paleontology, 25, 905–910.

    Article  Google Scholar 

  • Ritter, D. (1992). Lateral bending during lizard locomotion. Journal of Experimental Biology, 173, 1–9.

    Google Scholar 

  • Ritter, D. (1996). Axial muscle function during lizard locomotion. Journal of Experimental Biology, 199, 2499–2510.

    Google Scholar 

  • Romer, A. S. (1925). An ophiacodont reptile from the Permian of Kansas. Journal of Geology, 33, 173–182.

    Article  Google Scholar 

  • Romer, A. S. (1948). Ichthyosaur ancestors. American Journal of Science, 246, 109–121.

    Article  Google Scholar 

  • Romer, A. S. (1956). Osteology of the reptiles. Chicago: University of Chicago Press.

    Google Scholar 

  • Romer, A. S. (1957). Origin of the amniote egg. The Scientific Monthly, 85, 57–63.

    Google Scholar 

  • Romer, A. S. (1958). Tetrapod limbs and early tetrapod life. Evolution, 12, 365–369.

    Article  Google Scholar 

  • Romer, A. S., & Price, L. I. (1940). Review of the Pelycosauria. Geological Society of America Special Papers, 28, 1–538.

    Google Scholar 

  • Russell, A. P., & Bels, V. (2001). Biomechanics and kinematics of limb-based locomotion in lizards: Review, synthesis and prospectus. Comparative Biochemistry and Physiology Part A, 131, 89–112.

    Article  Google Scholar 

  • Samuels, J. X., & Van Valkenburgh, B. (2008). Skeletal indicators of locomotor adaptations in living and extinct rodents. Journal of Morphology, 269, 1387–1411.

    Article  Google Scholar 

  • Sullivan, C. S., & Reisz, R. R. (1999). First record of Seymouria (Vertebrata: Seymouriamorpha) from Early Permian fissure fills at Richards Spur, Oklahoma. Canadian Journal of Earth Sciences, 36, 1257–1266.

    Article  Google Scholar 

  • Sumida, S. S., & Modesto, S. (2001). A phylogenetic perspective on locomotory strategies in early amniotes. American Zoologist, 41, 586–597.

    Article  Google Scholar 

  • Taylor, M. A. (1994). Stone, bone, or blubber? Buoyancy control strategies in aquatic tetrapods. In L. Maddock, Q. Bone, & J. M. V. Rayner (Eds.), Mechanics and physiology of animal swimming (pp. 151–161). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Thewissen, J. G. M., & Fish, F. E. (1997). Locomotor evolution in the earliest cetaceans: Functional model, modern analogues, and paleontological evidence. Paleobiology, 23, 482–490.

    Google Scholar 

  • Thomason, J. J., & Russell, A. P. (1986). Mechanical factors in the evolution of the mammalian secondary palate: A theoretical analysis. Journal of Morphology, 189, 199–213.

    Article  Google Scholar 

  • Voight, S., Berman, D. S, & Henrici, A. C. (2007). First well-established trackmaker association of Paleozoic tetrapods based on Ichniotherium trackways and diadectid skeletons from the Lower Permian of Germany. Journal of Vertebrate Paleontology, 27, 553–570.

    Article  Google Scholar 

  • Webb, P. W. (1988). Simple physical principles and vertebrate aquatic locomotion. American Zoologist, 28, 709–725.

    Google Scholar 

  • Williams, T. M. (1983). Locomotion in the North American mink, a semi-aquatic mammal. I. Swimming energetics and body drag. Journal of Experimental Biology, 103, 155–168.

    Google Scholar 

  • Williston, S. W. (1911). American Permian vertebrates. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Williston, S. W. (1914). Water reptiles of the past and present. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Williston, S. W., & Case, E. C. (1913). Description of a nearly complete skeleton of Ophiacodon Marsh. Carnegie Institute of Washington Publication, 181, 37–59.

    Google Scholar 

Download references

Acknowledgments

Data collection for this project was supported by a Field Museum Internship awarded to RNF. We thank P. Holroyd, A. Resetar, W. Simpson, and W. Stanley for assistance with specimens. K. Melstrom measured the terrestrial varanid specimens. J. Caruso, D. Heins, and R. Parsley provided feedback on a previous version of the manuscript. S. Pierce, S. Sumida, and an anonymous reviewer also provided helpful suggestions. Presentation of results from this study at the 2008 Annual Meeting of the Society of Vertebrate Paleontology was made possible by a grant from The Jackson School of Geosciences, University of Texas, Austin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan N. Felice .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Felice, R.N., Angielczyk, K.D. (2014). Was Ophiacodon (Synapsida, Eupelycosauria) a Swimmer? A Test Using Vertebral Dimensions. In: Kammerer, C., Angielczyk, K., Fröbisch, J. (eds) Early Evolutionary History of the Synapsida. Vertebrate Paleobiology and Paleoanthropology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6841-3_3

Download citation

Publish with us

Policies and ethics