Skip to main content
Log in

Primates and engineering principles: Applications to craniodental mechanisms in ancient terrestrial predators

  • Engineering and Constructional Morphology
  • Published:
Senckenbergiana lethaea Aims and scope Submit manuscript

Abstract

Ancient terrestrial tetrapod ecosystems of the Permian Period document the expansion and diversification of the earliest carnivore guilds containing highly specialised killers. These predators were synapsids, the ancient ancestors of mammals. Determining the mode of life of fossils such as synapsids is fraught with difficulties. But developments in the past twenty years provide rigorous new approaches for ascertaining habit in extinct tetrapods. A synthetic-analytical coupling of appropriate experimental data with the hybrid numerical computer technique Finite Element Analysis (FEA) gives a robust interpretation of synapsid morphology. Applying these techniques to Late Permian predators refines our knowledge of carnivore habit and niche separation at this crucial stage in carnivore evolutionary history. The Synapsida dominated late Permian terrestrial ecosystems, and forms such as lycosuchids, scylacosaurids and gorgonopsids composed the bulk of the tetrapod predators. Their postcranial skeletons are very similar and provide few indications of ecological partitioning; synapsid skulls however show a great diversity of form.

Unlike many extinct tetrapods such as dinosaurs, synapsids are structurally closely comparable to a group of living amniotes: mammals. This is crucial as extensive experimental data on skull structure in mammals can be appropriately applied to synapsid cranial anatomy in a meaningful way. This is less so in, for example a scaled-up use of lizard skulls to interpret cranial function in theropod dinosaurs. Of particular use in this analysis of synapsid crania are the detailed experimental analyses of jaw and skull design in living primates. Stress-strain analyses of the mandible in primates allow a rigorous interpretation of jaw function in synapsids. This approach reveals some hitherto unknown aspects of the morphology and hence potential niche separation of these carnivores during the Permo-Triassic extinction event. In at least one instance, niche filling appears to have been based on a specific trophic ecotype: the gorgonopsid — moschorhinid convergence. The data is tied together by using FEA to examine stress patterns in fossil skulls. By using a synthetic-analytical approach, an interpretation of the cranial morphology of synapsid carnivores is produced of sufficient depth so that their niche separation based on predatory capability can be elucidated. Results provide insights into aspects of Permo-Triassic synapsid predator communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, J. M. &Cruickshank, A. R. I. (1978): The biostratigraphy of the Permian and the Triassic. Part 5. A review of the classification and distribution of Permo-Triassic tetrapods. Palaeontologia Africana.21: 15–44.

    Google Scholar 

  • Benton, M. J. (1993): The fossil record II. Chapman & Hall. London.

    Google Scholar 

  • Benton, M. J,Shishkin, M. A.,Unwin, D. M. &Kurochkin, E. N. (2000): The age of dinosaurs in Russia and Mongolia. — Cambridge University Press.

  • Biknevicius, A. R. &Van Valkenburgh, B. (1996): Design for Killing: Craniodental Adaptations of Predators. In:Gittleman, J. L. [ed]. Carnivore Behaviour, Ecology and Evolution Vol.2. Cornell University Press; Ithaca.

    Google Scholar 

  • Biknevicius, A. R., Van Valkenburgh, B. &Walker. J. (1996): Incisor size and shape: implications for feeding behaviours in saber-toothed “cats”. Journal of Vertebrate Paleontology.16 (3): 510–521.

    Google Scholar 

  • Briggs, D. E. G. &Crowther, P. R. (1990): Palaeobiology: a synthesis. — Blackwell Scientific Oxford.

  • Broom, R. (1930): On the structure of the mammal-like reptiles of the suborder Gorgonopsidae. Philosophical Transactions Royal Society. London. B.218: 345–371.

    Article  Google Scholar 

  • Broom, R. (1932): The mammal-like reptiles of South Africa and the origin of mammals. — H. F. & G. Witherby. London.

    Google Scholar 

  • Broom, R. (1936): On the structure of the skull in the mammal-like reptiles of the suborder Therocephalia. Philosophical Transactions Royal Society. London. B.226: 1–42.

    Article  Google Scholar 

  • Buckland-Wright, J. C. (1971): The shock-absorbing effect of cranial sutures in certain mammals. Journal of Dental Research. Supplement to No 5. Abstract. 1168.

  • Buckland-Wright, J. C. (1978): Bone structure and the patterns of force transmission in the cat skull (Felis catus): Journal of Morphology.155 (1): 35–62.

    Article  Google Scholar 

  • Busbey, A. B. (1995): The structural consequences of skull flattening in crocodilians. In:Thomason, J. J. [ed]. Functional Morphology in Vertebrate Paleontology. pp. 173–192. — Cambridge University Press.

  • Carroll, R. L. (1988): Vertebrate Paleontology and Evolution. — W.H.Freeman and Co. New York.

    Google Scholar 

  • Covey, D. S. G. &Greaves, W. S. (1994): Jaw dimensions and torsion resistance during canine biting in the Carnivora. Canadian Journal of Zoology.72: 1055–1060.

    Article  Google Scholar 

  • Durand, J. F. (1991): A revised description of the skull of Moschorhinus (Synapsida, Therocephalia): Annals South African Museum.99 (11): 381–413.

    Google Scholar 

  • Feder, M. &Lauder, G. V. (1986): Predator-prey relationships: perspectives and approaches from the study of lower vertebrates. — Chicago Press.

  • Gittleman, J. L. [ed]. (1989): Carnivore Behaviour, Ecology and Evolution. Vol 1. — Cornell University Press; Ithaca.

    Google Scholar 

  • Gittleman, J. L. [ed]. (1996): Carnivore Behaviour, Ecology and Evolution. Vol 2. 644 pp. Cornell University Press; Ithaca.

    Google Scholar 

  • Herring, S. W. (1972): Sutures — a tool in functional cranial analysis. Acta Anatomica.83: 222–247.

    Google Scholar 

  • Herring, S. W. (1998): How can animal models answer clinical questions? In: C.Carels & G.Williams (eds). The future of orthodontics. 89–96. — Leuven University Press.

  • Herring, S. W. (2000): sutures and craniosynostosis: a comparative, functional, and evolutionary perspective. In: M. M.Cohen [ed]. Craniosynostosis. 3–10. — Oxford University Press.

  • Herring, S. W. &Mucci, R. J. (1991):In-Vivo strain in cranial sutures: the zygomatic arch. Journal of Morphology.207: 225–239.

    Article  Google Scholar 

  • Herring, S. W., Shengyi Teng., Xiaofeng Huang., Mucci, R. J. &Freeman, J. (1996): Patterns of bone strain in the zygomatic arch. Anatomical record.246: 1–12.

    Article  Google Scholar 

  • Herring, S. W. &Shengyi Teng. (1999): Strain in the braincase and its sutures during function. American Journal of Physical Anthropology.109: 1–19.

    Article  Google Scholar 

  • Herzog, W. (2000): Skeletal Muscle Mechanics. — John Wiley & Sons Ltd.

  • Hylander, W. L. (1979a): Mandibular function in Galago crassicaudatus andMacaca fascicularis: an In Vivo approach to stress analysis of the mandible. Journal of Morphology.159 (2): 253–296.

    Article  Google Scholar 

  • Hylander, W. L. (1979b): The functional significance of primate mandibular form. Journal of Morphology.160 (2): 223–239.

    Article  Google Scholar 

  • Hylander, W. L. (1984): Stress and strain in the mandibular symphysis of primates: A test of competing hypotheses. American Journal of Physical Anthropology.64: 1–46.

    Article  Google Scholar 

  • Hylander, W. L. (1985): Mandibular function and biomechanical stress and scaling. Amer. Zool.25: 315–330.

    Google Scholar 

  • Hylander. W. L. (1986):In-Vivo bone strain as an indicator of masticatory bite force inMacaca fascicularis. Arch. Oral. Biol.31 (3): 149–157.

    Article  Google Scholar 

  • Hylander, W. L. (1988): Implications ofIn-Vivo Experiments for interpretation of the functional significance of “Robust” Australopithecine jaws. Journal of Morphology.159 (2): 253–296.

    Article  Google Scholar 

  • Hylander, W. L, & K. R.Johnson. (1992): Strain gradients in the craniofacial region of primates. In: Z.Davidovitch [ed] The biological mechanisms of tooth movement and craniofacial adaptation. 559–569. Ohio University Press.

  • Hylander. W. L., M. J. Ravosa., C. F. Ross &K. R. Johnson. (1998): Mandibular corpus strain in primates: further evidence for a functional link between symphyseal fusion and jaw-adductor muscle force. American Journal of Physical Anthropology.107: 257–271.

    Article  Google Scholar 

  • Jaslow, C. R. (1989): Sexual dimorphism of cranial suture complexity in wild sheep (Ovis orientalis): Journal of Zoology. London.95: 273–284.

    Google Scholar 

  • Jaslow, C. R. (1990): Mechanical properties of cranial sutures. Journal of Biomechanics.23: 313–321.

    Article  Google Scholar 

  • Jenkins, I. (1998): Cranial form and function in some Permian carnivorous synapsid (mammal-like) reptiles. — Unpublished PhD-Dissertation. — University of Cambridge.

  • Kemp, T. S. (1969): On the functional morphology of the gorgonopsid skull. Philosophical. Transactions Royal Society London.B 256: 1–83.

    Article  Google Scholar 

  • Kemp, T. S. (1972): The jaw articulation and musculature of the whaitsiid Therocephalia. In:K. A. Joysey. &T. S. Kemp. (Ed’s). Studies in vertebrate evolution. 213–230. Oliver and Boyd. Edinburgh.

    Google Scholar 

  • Kemp, T. S. (1982): Mammal-like reptiles and the origin of mammals. Academic Press, London.

    Google Scholar 

  • Lauder, G. V. (1995): On the inference of function from structure. In: J. J.Thomason [ed]. Functional Morphology in Vertebrate Palaeontology. 1–18. Cambridge University Press.

  • Lee, M. S. Y. (1997): A taxonomic revision of pareiasaurian reptiles: implications for Permian terrestrial palaeoecology. Modern Geology.21: 231–298.

    Google Scholar 

  • Martin, R. B., D. B. Burr &N. A. Sharkey (1998): Skeletal Tissue Mechanics. — Springer, New York.

    Google Scholar 

  • Mendrez, Ch. H. (1974a): Etude du crane d’un jeune specimen deMoschorhinus kitchingi Broom 1920 (?Tigrisuchus simus), Therocephalia, Pristerosauria, Moschorhinidae d’Afrique australe. Annals South African Museum.64: 71–115.

    Google Scholar 

  • Mendrez, Ch. H. (1974b): A new specimen ofPromoschorhynchus platyrhinus Brink 1954 (Moschorhinidae) from the Daptocephalus-zone (Late Permian) of South Africa. Palaeontologia Africana.17: 69–85.

    Google Scholar 

  • Mendrez, Ch. H. (1975): Principales variations du palais chez les therocephales sud-africains (Pristerosauria et Scaloposauria) au cours du Permien Superieur et du Trias Inferieur. Colloque International C.N.R.S No. 218. (Paris). Problemes actuels de paleontologie-evolution des vertebres. 379–408.

  • Meriam, J. L. &Kraige, L. G. (1993): Engineering mechanics (2 volumes). — John Wiley & Sons, Inc. New York.

    Google Scholar 

  • Parrington, F. R. (1955): On the cranial anatomy of some gorgonopsids and the synapsid middle ear. Proceedings Zoological Society London.125 (1): 1–40.

    Google Scholar 

  • Radinsky, L. B. (1981a): Evolution of skull shape in carnivores, 1: Representative modern carnivores. Biological Journal Linnean Society. London.15: 369–388.

    Article  Google Scholar 

  • Radinsky, L. B. (1981b): Evolution of skull shape in carnivores, 2: Additional modern carnivores. Biological Journal Linnean Society. London.16: 337–355.

    Article  Google Scholar 

  • Rafferty, K. L &Herring, S. W (1999): Craniofacial sutures: morphology, growth andIn Vivo masticatory strains. Journal of Morphology.242: 167–179.

    Article  Google Scholar 

  • Ravosa, M. J. andHylander, W. L. (1993): Functional significance of an ossified mandibular symphysis: A reply. American Journal of Physical Anthropology.90: 509–512.

    Article  Google Scholar 

  • Romer, A. S. 1966. Vertebrate Paleontology. — University of Chicago Press.

  • Rubidge, B. S. [ed]. (1995): Biostratigraphy of the Beaufort Group (Karoo Supergroup). — Geological Survey of South Africa. Biostratigraphic Series 1.

  • Sennikov, A. G. (1996): Evolution of the Permian and Triassic tetrapod communities of Eastern Europe. Palaeogeography, Palaeoclimatology, Palaeoecology.120: 331–351.

    Article  Google Scholar 

  • Sigogneau, D. (1970a): Revision Systematique des Gorgonopsiens Sud-Africains. Cahiers. Paleontologie.

  • Sigogneau-Russell, D. (1989): Theriodontia 1. In: O.Kuhn [ed]. Encyclopaedia of Paleoherpetology. Part 17B/1. — Gustav Fischer Verlag Stuttgart.

  • Sues, H-D [ed]. (2000). Evolution of herbivory in terrestrial vertebrates: perspectives from the fossil record. — Cambridge University Press.

  • Thomason, J. J. &Russell, A. P. (1986): Mechanical factors in the evolution of the mammalian secondary palate: a theoretical analysis. Journal of Morphology.189: 189–213.

    Article  Google Scholar 

  • Thomason, J. J. (1991): Cranial strength in relation to estimated biting forces in some mammals. Canadian Journal of Zoology.69: 2326–2333.

    Article  Google Scholar 

  • Thomason, J. J. [ed]. (1995): Functional Morphology in Vertebrate Paleontology. — Cambridge University Press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jenkins, I., Thomason, J.J. & Norman, D.B. Primates and engineering principles: Applications to craniodental mechanisms in ancient terrestrial predators. Senckenbergiana lethaea 82, 223–240 (2002). https://doi.org/10.1007/BF03043786

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03043786

Key words

Navigation