Skip to main content

Virus Maturation

  • Chapter
  • First Online:
Structure and Physics of Viruses

Part of the book series: Subcellular Biochemistry ((SCBI,volume 68))

  • 6118 Accesses

Abstract

The formation of infectious virus particles is a highly complex process involving a series of sophisticated molecular events. In most cases, the assembly of virus structural elements results in the formation of immature virus particles unable to initiate a productive infection. Accordingly, for most viruses the final stage of the assembly pathway entails a set of structural transitions and/or biochemical modifications that transform inert precursor particles into fully infectious agents. In this chapter, we review the most relevant maturation mechanisms involved in the generation of infectious virions for a wide variety of viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3D:

Three dimensional.

AcMNPV:

Autographa californica nucleopolyhedrovirus

CA:

Capsid protein of HIV

DNA:

Deoxyribonucleic acid

ER:

Endoplasmic reticulum

ESCRT:

Endosomal sorting complexes required for transport

gp:

Glycoprotein

HA:

Hemagglutinin

HB-sAg:

HBV surface antigen

HBV:

Hepatitis B virus

HIV-1:

Human immunodeficiency virus type 1

HSV-1:

Herpes simplex virus type 1

IAV:

Influenza A virus

kbp:

Kilobase pairs

MA:

Matrix protein of HIV

NC:

Nucleocapsid protein of HIV

NωV:

Nudaurelia capensis ω virus

ORF:

Open reading frame

PR:

Protease of HIV

RNA:

Ribonucleic acid

T:

Triangulation number

VLP:

Virus-like particle

VP:

Virus protein

WNPV:

Wiseana nucleopolyhedrovirus

References and Further Reading

  1. Agrawal DK, Johnson JE (1995) Assembly of the T = 4 Nudaurelia capensis omega virus capsid protein, post-translational cleavage, and specific encapsidation of its mRNA in a baculovirus expression system. Virology 207:89–97

    Article  PubMed  CAS  Google Scholar 

  2. Bilimoria SL, Arif BM (1979) Subunit protein and alkaline protease of entomopox virus spheroids. Virology 96:596–603

    Article  PubMed  CAS  Google Scholar 

  3. Briggs JA, Kräusslich HG (2011) The molecular architecture of HIV. J Mol Biol 410:491–500

    Article  PubMed  CAS  Google Scholar 

  4. Brown JC, Newcomb WW (2011) Herpesvirus capsid assembly: insights from structural analysis. Curr Opin Virol 1:142–149

    Article  PubMed  CAS  Google Scholar 

  5. Chan DC, Fass D, Berger JM, Kim PS (1997) Core structure of gp41 from the HIV envelope glycoprotein. Cell 89:263–273

    Article  PubMed  CAS  Google Scholar 

  6. Chan WE, Chen SS (2006) Downregulation of human immunodeficiency virus type 1 Gag expression by a gp41 cytoplasmic domain fusion protein. Virology 348:418–429

    Article  PubMed  CAS  Google Scholar 

  7. Chertova E, Chertov O, Coren LV, Roser JD, Trubey CM, Bess JW Jr, Sowder RC 2nd, Barsov E, Hood BL, Fisher RJ, Nagashima K, Conrads TP, Veenstra TD, Lifson JD, Ott DE (2006) Proteomic and biochemical analysis of purified human immunodeficiency virus type 1 produced from infected monocyte-derived macrophages. J Virol 80:9039–9052

    Article  PubMed  CAS  Google Scholar 

  8. Chiu E, Coulibaly F, Metcalf P (2012) Insect virus polyhedra, infectious protein crystals that contain virus particles. Curr Opin Struct Biol 22:234–240

    Article  PubMed  CAS  Google Scholar 

  9. Coulibaly F, Chiu E, Gutmann S, Rajendran C, Haebel PW, Ikeda K, Mori H, Ward VK, Schulze-Briese C, Metcalf P (2009) The atomic structure of baculovirus polyhedra reveals the independent emergence of infectious crystals in DNA and RNA viruses. Proc Natl Acad Sci U S A 106:22205–22210

    Article  PubMed  CAS  Google Scholar 

  10. Daniels R, Kurowski B, Johnson AE, Hebert DN (2003) N-linked glycans direct the cotranslational folding pathway of influenza hemagglutinin. Mol Cell 1179–1190

    Google Scholar 

  11. Davison AJ, Eberle R, Ehlers B, Hayward GS, McGeoch DJ, Minson AC, Pellett PE, Roizman B, Studdert MJ, Thiry E (2009) The order Herpesvirales. Arch Virol 154:171–177

    Article  PubMed  CAS  Google Scholar 

  12. Ganem D, Prince AM (2004) Hepatitis B virus infection–natural history and clinical consequences. N Engl J Med 350:1118–11129

    Article  PubMed  CAS  Google Scholar 

  13. Ganser-Pornillos BK, Yeager M, Sundquist WI (2008) The structural biology of HIV assembly. Curr Opin Struct Biol 18:203–217

    Article  PubMed  CAS  Google Scholar 

  14. Gao M, Matusick-Kumar L, Hurlburt W, DiTusa SF, Newcomb WW, Brown JC, McCann PJ 3rd, Deckman I, Colonno RJ (1994) The protease of herpes simplex virus type 1 is essential for functional capsid formation and viral growth. J Virol 68:3702–3712

    PubMed  CAS  Google Scholar 

  15. Gething MJ, McCammon K, Sambrook J (1986) Expression of wild-type and mutant forms of influenza hemagglutinin: the role of folding in intracellular transport. Cell 46:939–950

    Article  PubMed  CAS  Google Scholar 

  16. Hanzlik TN, Gordon KH (1997) The tetraviridae. Adv Virus Res 48:101–168

    Article  PubMed  CAS  Google Scholar 

  17. Hebert DN, Foellmer B, Helenius A (1995) Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. Cell 81(3):425–433

    Article  PubMed  CAS  Google Scholar 

  18. Heermann KH, Goldmann U, Schwartz W, Seyffarth T, Baumgarten H, Gerlich WH (1984) Large surface proteins of hepatitis B virus containing the pre-s sequence. J Virol 52:396–402

    PubMed  CAS  Google Scholar 

  19. Helgstrand C, Munshi S, Johnson JE, Liljas L (2004) The refined structure of nudaurelia capensis omega virus reveals control elements for a T = 4 capsid maturation. Virology 318:192–203

    Article  PubMed  CAS  Google Scholar 

  20. Herniou EA, Jehle JA (2007) Baculovirus phylogeny and evolution. Curr Drug Targets 8:1043–1050

    Article  PubMed  CAS  Google Scholar 

  21. Heymann JB, Cheng N, Newcomb WW, Trus BL, Brown JC, Steven AC (2003) Dynamics of herpes simplex virus capsid maturation visualized by time-lapse cryo-electron microscopy. Nat Struct Biol 10:334–341

    Article  PubMed  CAS  Google Scholar 

  22. Howard AR, Weisberg AS, Moss B (2010) Congregation of orthopoxvirus virions in cytoplasmic a-type inclusions is mediated by interactions of a bridging protein (A26p) with a matrix protein (ATIp) and a virion membrane-associated protein (A27p). J Virol 84:7592–7602

    Article  PubMed  CAS  Google Scholar 

  23. Huovila AP, Eder AM, Fuller SD (1992) Hepatitis B surface antigen assembles in a post-ER, pre-Golgi compartment. J Cell Biol 118:1305–1320

    Article  PubMed  CAS  Google Scholar 

  24. Johnson JE (2010) Virus particle maturation: insights into elegantly programmed nanomachines. Curr Opin Struct Biol 20:210–216

    Article  PubMed  CAS  Google Scholar 

  25. Klenk HD, Wagner R, Heuer D, Wolff T (2002) Importance of hemagglutinin glycosylation for the biological functions of influenza virus. Virus Res 82:73–75

    Article  PubMed  CAS  Google Scholar 

  26. Lu X, Mehta A, Dadmarz M, Dwek R, Blumberg BS, Block TM (1997) Aberrant trafficking of hepatitis B virus glycoproteins in cells in which N-glycan processing is inhibited. Proc Natl Acad Sci U S A 94:2380–2385

    Article  PubMed  CAS  Google Scholar 

  27. Martelli GP, Russo M (1977) Plant virus inclusion. Adv Virus Res 21:175–266

    Article  PubMed  CAS  Google Scholar 

  28. Matsui T, Lander G, Johnson JE (2009) Characterization of large conformational changes and autoproteolysis in the maturation of a T = 4 virus capsid. J Virol 83(2):1126–1134

    Article  PubMed  CAS  Google Scholar 

  29. Mehta A, Lu X, Block TM, Blumberg BS, Dwek RA (1997) Hepatitis B virus (HBV) envelope glycoproteins vary drastically in their sensitivity to glycan processing: evidence that alteration of a single N-linked glycosylation site can regulate HBV secretion. Proc Natl Acad Sci U S A 94:1822–1827

    Article  PubMed  CAS  Google Scholar 

  30. Merry T, Astrautsova S (2010) Alternative approaches to antiviral treatments: focusing on glycosylation as a target for antiviral therapy. Biotechnol Appl Biochem 56:103–109

    Article  PubMed  CAS  Google Scholar 

  31. Munshi S, Liljas L, Cavarelli J, Bomu W, McKinney B, Reddy V, Johnson JE (1996) The 2.8 A structure of a T = 4 animal virus and its implications for membrane translocation of RNA. J Mol Biol 261:1–10

    Article  PubMed  CAS  Google Scholar 

  32. Nobusawa E, Aoyama T, Kato H, Suzuki Y, Tateno Y, Nakajima K (1991) Comparison of complete amino acid sequences and receptor-binding properties among 13 serotypes of hemagglutinins of influenza a viruses. Virology 182:475–485

    Article  PubMed  CAS  Google Scholar 

  33. Payne CC, Mertens PPC (1983) Cytoplasmic polyhedrosis viruses. In: Joklik WK (ed) The reoviridae. Plenum Press, New York

    Google Scholar 

  34. Pettit SC, Moody MD, Wehbie RS, Kaplan AH, Nantermet PV, Klein CA, Swanstrom R (1994) The p2 domain of human immunodeficiency virus type 1 Gag regulates sequential proteolytic processing and is required to produce fully infectiousvirions. J Virol 68:8017–8027

    PubMed  CAS  Google Scholar 

  35. Rixon FJ (2008) A good catch: packaging the virus genome. Cell Host Microbe 3:120–122

    Article  PubMed  CAS  Google Scholar 

  36. Roberts PC, Garten W, Klenk HD (1993) Role of conserved glycosylation sites in maturation and transport of influenza a virus hemagglutinin. J Virol 67:3048–3060

    PubMed  CAS  Google Scholar 

  37. Rohrmann GF (1986) Polyhedrin structure. J Gen Virol 67:1499–1513

    Article  PubMed  CAS  Google Scholar 

  38. Schmitt S, Glebe D, Alving K, Tolle TK, Linder M, Geyer H, Linder D, Peter-Katalinic J, Gerlich WH, Geyer R (1999) Analysis of the pre-S2 N- and O-linked glycans of the M surface protein from human hepatitis B virus. J Biol Chem 274:11945–11957

    Article  PubMed  CAS  Google Scholar 

  39. Schreiber G, Keating AE (2011) Protein binding specificity versus promiscuity. Curr Opin Struct Biol 21:50–61

    Article  PubMed  CAS  Google Scholar 

  40. Shinya K, Makino A, Kawaoka Y (2010) Emerging and reemerging influenza virus infections. Vet Pathol 47:53–57

    Article  PubMed  CAS  Google Scholar 

  41. Skehel JJ, Wiley DC (2000) Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 69:531–569

    Article  PubMed  CAS  Google Scholar 

  42. Steven AC, Heymann JB, Cheng N, Trus BL, Conway JF (2005) Virus maturation: dynamics and mechanism of a stabilizing structural transition that leads to infectivity. Curr Opin Struct Biol 15:227–236

    Article  PubMed  CAS  Google Scholar 

  43. Stiasny K, Fritz R, Pangerl K, Heinz FX (2011) Molecular mechanisms of flavivirus membrane fusion. Amino Acids 41:1159–1163

    Article  PubMed  CAS  Google Scholar 

  44. Taylor DJ, Krishna NK, Canady MA, Schneemann A, Johnson JE (2002) Large-scale, pH-dependent, quaternary structure changes in an RNA virus capsid are reversible in the absence of subunit autoproteolysis. J Virol 76:9972–9980

    Article  PubMed  CAS  Google Scholar 

  45. Telesnitsky A (2010) Retroviruses: molecular biology, genomics and pathogenesis. Future Virol 5:539–5343

    Article  PubMed  CAS  Google Scholar 

  46. Thomsen DR, Roof LL, Homa FL (1994) Assembly of herpes simplex virus (HSV) intermediate capsids in insect cells infected with recombinant baculoviruses expressing HSV capsid proteins. J Virol 68:2442–2457

    PubMed  CAS  Google Scholar 

  47. Vigerust DJ, Shepherd VL (2007) Virus glycosylation: role in virulence and immune interactions. Trends Microbiol 15:211–218

    Article  PubMed  CAS  Google Scholar 

  48. Werr M, Prange R (1998) Role for calnexin and N-linked glycosylation in the assembly and secretion of hepatitis B virus middle envelope protein particles. J Virol 72:778–782

    PubMed  CAS  Google Scholar 

  49. Whitt MA, Manning JS (1988) A phosphorylated 34-kDa protein and a subpopulation of polyhedrin are thiol linked to the carbohydrate layer surrounding a baculovirus occlusion body. Virology 163:33–42

    Article  PubMed  CAS  Google Scholar 

  50. Wilson IA, Skehel JJ, Wiley DC (1981) Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature 289:366–373

    Article  PubMed  CAS  Google Scholar 

  51. Zhang M, Gaschen B, Blay W, Foley B, Haigwood N, Kuiken C, Korber B (2004) Tracking global patterns of N-linked glycosylation site variation in highly variable viral glycoproteins: HIV, SIV, and HCV envelopes and influenza hemagglutinin. Glycobiology 14:1229–1246

    Article  PubMed  CAS  Google Scholar 

Further Reading

  • References [8, 13, 21, 24, 35, 41, 42, 43, and 47] listed above are especially recommended for further reading.

    Google Scholar 

Download references

Acknowledgements

We thank Dolores Rodríguez and Ana Oña for critical readings of the manuscript. This work was supported by grant from the Spanish Ministry of Economy and Competitiveness AGL2011-24758 to JFR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José F. Rodríguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Delgui, L.R., Rodríguez, J.F. (2013). Virus Maturation. In: Mateu, M. (eds) Structure and Physics of Viruses. Subcellular Biochemistry, vol 68. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6552-8_13

Download citation

Publish with us

Policies and ethics