Skip to main content
Log in

Molecular mechanisms of flavivirus membrane fusion

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Flaviviruses comprise a number of important human pathogens including yellow fever, dengue, West Nile, Japanese encephalitis and tick-borne encephalitis viruses. They are small enveloped viruses that enter cells by receptor-mediated endocytosis and release their nucleocapsid into the cytoplasm by fusing their membrane with the endosomal membrane. The fusion event is triggered by the acidic pH in the endosome and is mediated by the major envelope protein E. Based on the atomic structures of the pre- and post-fusion conformations of E, a fusion model has been proposed that includes several steps leading from the metastable assembly of E at the virion surface to membrane merger and fusion pore formation trough conversion of E into a stable trimeric post-fusion conformation. Using recombinant subviral particles of tick-borne encephalitis virus as a model, we have defined individual steps of the molecular processes underlying the flavivirus fusion mechanisms. This includes the identification of a conserved histidine as being part of the pH sensor in the fusion protein that responds to the acidic pH and thus initiates the structural transitions driving fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allison SL, Schalich J, Stiasny K, Mandl CW, Heinz FX (2001) Mutational evidence for an internal fusion peptide in flavivirus envelope protein E. J Virol 75:4268–4275

    Article  PubMed  CAS  Google Scholar 

  • Backovic M, Jardetzky TS (2009) Class III viral membrane fusion proteins. Curr Opin Struct Biol 19:189–196

    Article  PubMed  CAS  Google Scholar 

  • Bressanelli S, Stiasny K, Allison SL, Stura EA, Duquerroy S, Lescar J, Heinz FX, Rey FA (2004) Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J 23:728–738

    Article  PubMed  CAS  Google Scholar 

  • Campadelli-Fiume G, Amasio M, Avitabile E, Cerretani A, Forghieri C, Gianni T, Menotti L (2007) The multipartite system that mediates entry of herpes simplex virus into the cell. Rev Med Virol 17:313–326

    Article  PubMed  CAS  Google Scholar 

  • Chernomordik LV, Kozlov MM (2008) Mechanics of membrane fusion. Nat Struct Mol Biol 15:675–683

    Article  PubMed  CAS  Google Scholar 

  • Corver J, Ortiz A, Allison SL, Schalich J, Heinz FX, Wilschut J (2000) Membrane fusion activity of tick-borne encephalitis virus and recombinant subviral particles in a liposomal model system. Virology 269:37–46

    Article  PubMed  CAS  Google Scholar 

  • DeLano WL (2002) The pymol molecular graphics system. www.pymol.org

  • Ferlenghi I, Clarke M, Ruttan T, Allison SL, Schalich J, Heinz FX, Harrison SC, Rey FA, Fuller SD (2001) Molecular organization of a recombinant subviral particle from tick-borne encephalitis virus. Mol Cell 7:593–602

    Article  PubMed  CAS  Google Scholar 

  • Fritz R, Stiasny K, Heinz FX (2008) Identification of specific histidines as pH sensors in flavivirus membrane fusion. J Cell Biol 183:353–361

    Article  PubMed  CAS  Google Scholar 

  • Gubler D, Kuno G, Markhoff L (2006) Flaviviruses. In: Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Straus SE (eds) Fields virology, 5th edn. Lippincott, Philadelphia, pp 1153–1252

    Google Scholar 

  • Harrison SC (2008a) The pH sensor for flavivirus membrane fusion. J Cell Biol 183:177–179

    Article  PubMed  CAS  Google Scholar 

  • Harrison SC (2008b) Viral membrane fusion. Nat Struct Mol Biol 15:690–698

    Article  PubMed  CAS  Google Scholar 

  • Kampmann T, Mueller DS, Mark AE, Young PR, Kobe B (2006) The role of histidine residues in low-pH-mediated viral membrane fusion. Structure 14:1481–1487

    Article  PubMed  CAS  Google Scholar 

  • Kanai R, Kar K, Anthony K, Gould LH, Ledizet M, Fikrig E, Marasco WA, Koski RA, Modis Y (2006) Crystal structure of west nile virus envelope glycoprotein reveals viral surface epitopes. J Virol 80:11000–11008

    Article  PubMed  CAS  Google Scholar 

  • Kielian M (2006) Class II virus membrane fusion proteins. Virology 344:38–47

    Article  PubMed  CAS  Google Scholar 

  • Kielian M, Rey FA (2006) Virus membrane-fusion proteins: more than one way to make a hairpin. Nat Rev Microbiol 4:67–76

    Article  PubMed  CAS  Google Scholar 

  • Kuhn RJ, Zhang W, Rossmann MG, Pletnev SV, Corver J, Lenches E, Jones CT, Mukhopadhyay S, Chipman PR, Strauss EG, Baker TS, Strauss JH (2002) Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108:717–725

    Article  PubMed  CAS  Google Scholar 

  • Martens S, McMahon HT (2008) Mechanisms of membrane fusion: disparate players and common principles. Nat Rev Mol Cell Biol 9:543–556

    Article  PubMed  CAS  Google Scholar 

  • Modis Y, Ogata S, Clements D, Harrison SC (2003) A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci USA 100:6986–6991

    Article  PubMed  CAS  Google Scholar 

  • Modis Y, Ogata S, Clements D, Harrison SC (2004) Structure of the dengue virus envelope protein after membrane fusion. Nature 427:313–319

    Article  PubMed  CAS  Google Scholar 

  • Modis Y, Ogata S, Clements D, Harrison SC (2005) Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein. J Virol 79:1223–1231

    Article  PubMed  CAS  Google Scholar 

  • Moss B (2006) Poxvirus entry and membrane fusion. Virology 344:48–54

    Article  PubMed  CAS  Google Scholar 

  • Mueller DS, Kampmann T, Yennamalli R, Young PR, Kobe B, Mark AE (2008) Histidine protonation and the activation of viral fusion proteins. Biochem Soc Trans 36:43–45

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay S, Kim BS, Chipman PR, Rossmann MG, Kuhn RJ (2003) Structure of West Nile virus. Science 302:248

    Article  PubMed  CAS  Google Scholar 

  • Nayak V, Dessau M, Kucera K, Anthony K, Ledizet M, Modis Y (2009) Crystal structure of dengue virus type 1 envelope protein in the postfusion conformation and its implications for membrane fusion. J Virol 83:4338–4344

    Article  PubMed  CAS  Google Scholar 

  • Nelson S, Poddar S, Lin TY, Pierson TC (2009) Protonation of individual histidine residues is not required for the pH-dependent entry of West Nile virus: evaluation of the “histidine-switch” hypothesis. J Virol. doi:10.1128/JVI.01072-09

  • Nybakken GE, Nelson CA, Chen BR, Diamond MS, Fremont DH (2006) Crystal structure of the West Nile virus envelope glycoprotein. J Virol 80:11467–11474

    Article  PubMed  CAS  Google Scholar 

  • Qin ZL, Zheng Y, Kielian M (2009) Role of conserved histidine residues in the low-pH dependence of the Semliki Forest virus fusion protein. J Virol 83:4670–4677

    Article  PubMed  CAS  Google Scholar 

  • Rey FA, Heinz FX, Mandl C, Kunz C, Harrison SC (1995) The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature 375:291–298

    Article  PubMed  CAS  Google Scholar 

  • Roche S, Albertini AA, Lepault J, Bressanelli S, Gaudin Y (2008) Structures of vesicular stomatitis virus glycoprotein: membrane fusion revisited. Cell Mol Life Sci 65:1716–1728

    Article  PubMed  CAS  Google Scholar 

  • Roussel A, Lescar J, Vaney MC, Wengler G, Wengler G, Rey FA (2006) Structure and interactions at the viral surface of the envelope protein E1 of Semliki Forest virus. Structure 14:75–86

    Article  PubMed  CAS  Google Scholar 

  • Schalich J, Allison SL, Stiasny K, Mandl CW, Kunz C, Heinz FX (1996) Recombinant subviral particles from tick-borne encephalitis virus are fusogenic and provide a model system for studying flavivirus envelope glycoprotein functions. J Virol 70:4549–4557

    PubMed  CAS  Google Scholar 

  • Sollner TH (2004) Intracellular and viral membrane fusion: a uniting mechanism. Curr Opin Cell Biol 16:429–435

    Article  PubMed  CAS  Google Scholar 

  • Srivastava J, Barber DL, Jacobson MP (2007) Intracellular pH sensors: design principles and functional significance. Physiology 22:30–39

    Article  PubMed  CAS  Google Scholar 

  • Stevens J, Corper AL, Basler CF, Taubenberger JK, Palese P, Wilson IA (2004) Structure of the uncleaved human H1 hemagglutinin from the extinct 1918 influenza virus. Science 303:1866–1870

    Article  PubMed  CAS  Google Scholar 

  • Stiasny K, Heinz FX (2006) Flavivirus membrane fusion. J Gen Virol 87:2755–2766

    Article  PubMed  CAS  Google Scholar 

  • Weissenhorn W, Hinz A, Gaudin Y (2007) Virus membrane fusion. FEBS Lett 581:2150–2155

    Article  PubMed  CAS  Google Scholar 

  • White JM, Delos SE, Brecher M, Schornberg K (2008) Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme. Crit Rev Biochem Mol Biol 43:189–219

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Zhang W, Ogata S, Clements D, Strauss JH, Baker TS, Kuhn RJ, Rossmann MG (2004) Conformational changes of the flavivirus E glycoprotein. Structure 12:1607–1618

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Austrian Science Fund (FWF; P19843-B13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Stiasny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stiasny, K., Fritz, R., Pangerl, K. et al. Molecular mechanisms of flavivirus membrane fusion. Amino Acids 41, 1159–1163 (2011). https://doi.org/10.1007/s00726-009-0370-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-009-0370-4

Keywords

Navigation