Skip to main content

Integrin Antagonists and Angiogenesis

  • Chapter
  • First Online:
Angiogenesis Modulations in Health and Disease
  • 848 Accesses

Abstract

Integrins and associated extracellular matrix protein ligands participate in angiogenesis, thrombosis, apoptosis, cell migration and proliferation. Disorders of such processes lead to acute and chronic disease states such as ocular diseases, cancer metastasis, unstable angina, myocardial infarction, stroke, osteoporosis, a wide range of inflammatory diseases, vascular remodeling and neurodegenerative disorders. Progress has been substantial in the development of antagonists for αvβ3, αvβ5, and αvβ1 integrins to modulate angiogenesis and blood vessel-related disorders. Several reports illustrate existence of crosstalk between integrins and various hormonal systems. The expression of αv integrin on distinct cell types contributes to cancer growth, and αv integrin antagonists have the potential to disrupt multiple aspects of cancer and blood vessel disease progression. The rationale for the development of various therapeutic and diagnostic candidate anti-integrin agents is reviewed here, as are nanoparticle delivery systems directed at specific sites on integrins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hwang DS, Sim SB, Cha HJ (2007) Cell adhesion biomaterial based on mussel adhesive protein fused with RGD peptide. Biomaterials 28:4034–4046

    Google Scholar 

  2. Ruoslahti E (2003) The RGD, story: a personal account. Matrix Biol 22:459–465

    Article  PubMed  CAS  Google Scholar 

  3. Ruoslahti E, Pierschbacher M (1987) New perspectives in cell adhesion: RGD and integrins. Science 238:491–497

    Article  PubMed  CAS  Google Scholar 

  4. Ruoslahti E, Pierschbacher M (1986) ARG-GLY-ASP: a versatile cell recognition sequence. Cell 44:517–518

    Article  PubMed  CAS  Google Scholar 

  5. Hynes RO (1992) Integrins: versatility, modulation and signaling in cell adhesion. Cell 69:11–25

    Article  PubMed  CAS  Google Scholar 

  6. Cox D, Aoki T, Seki J, Motoyama Y, Yoshida K (1994) The pharmacology of the integrins. Med Res Rev 14(2):195–228

    Article  PubMed  CAS  Google Scholar 

  7. Albelda SM, Buck CA (1990) Integrins and other cell adhesion molecules. FASEB J 4:2868–2880

    PubMed  CAS  Google Scholar 

  8. Cheresh D (1993) Integrins: structure, function and biological properties. Adv Mol Cell Biol 6:225–252

    Article  Google Scholar 

  9. Guadagno TM, Ohtsubo M, Roberts JM et al (1993) A link between cyclin A expression and adhesion dependent cell cycle proliferation. Science 262:1572–1575

    Article  PubMed  CAS  Google Scholar 

  10. Juliano RL, Haskill S (1993) Signal transduction from the extracellular matrix. J Cell Biol 120:577–585

    Article  PubMed  CAS  Google Scholar 

  11. Kornberg LJ, Earb HS, Turner CE et al (1991) Signal transduction by integrins: increased protein tyrosine phosphorylation caused by clustering of β1 integrins. Proc Natl Acad Sci USA 88:8392–8395

    Article  PubMed  CAS  Google Scholar 

  12. Kornberg L, Earp HS, Parsons JT et al (1992) Cell adhesion or integrin clustering increased phorphorylation of a focal adhesion associated kinase. J Biol Chem 117:1101–1107

    Google Scholar 

  13. Guan JL, Salloway D (1992) Regulation of focal adhesion associated protein tyrosine kinase by both cellular adhesion and oncogenic transformation. Nature 358:690–692

    Article  PubMed  CAS  Google Scholar 

  14. Pelletier AJ, Bodary SX, Levinson AD (1992) Signal transduction by the platelet integrin αIIbβ3: induction of calcium oscillations required for protein-tyrosine phosphorylation and ligand-induced spreading of stably transfected cells. Mol Biol Cell 3:989–998

    PubMed  CAS  Google Scholar 

  15. Vinogradova O, Velyvis A, Velyviene A, Hu B, Haas T, Plow E, Qin J (2002) A structural mechanism of integrin alpha(IIb)beta(3) “inside-out” activation as regulated by its cytoplasmic face. Cell 110(5):587–597

    Article  PubMed  CAS  Google Scholar 

  16. Topol EJ, Califf RM, Weisman HF et al (1994) Randomised trial of coronary intervention with antibody against platelet IIb/IIIa integrin for reduction of clinical restenosis: results at six months. Lancet 343:881–886

    Article  PubMed  CAS  Google Scholar 

  17. The EPIC Investigators (1994) Use of a monoclonal antibody directed against the platelet glycoprotein IIb/IIIa receptor in high-risk coronary angioplasty. The EPIC Investigation. N Engl J Med 330:956–961

    Article  Google Scholar 

  18. Mousa SA (1999) Antiplatelet therapies: from aspirin to GPIIb/IIIa receptor antagonists and beyond. Drug Discov Today 4(12):552–561

    Article  PubMed  CAS  Google Scholar 

  19. Ma YQ, Qin J (2007) Plow EFPlatelet integrin alpha(IIb)beta(3): activation mechanisms. J Thromb Haemost 5(7):1345–1352

    Article  PubMed  CAS  Google Scholar 

  20. Staunton DE, Marlin SD, Stratowa C, Dustin ML, Springer TA (1988) Primary structure of ICAM-1 demonstrates interaction between members of the immunoglobulin and integrin supergene families. Cell 52:925–929

    Article  PubMed  CAS  Google Scholar 

  21. Romo GM, Dong J, Schade AJ, Gardiner EE, Kansas GS, Li CQ, McIntire LV, Berndt MC, Lopez JA (1999) The glycoprotein Ib-IX-V complex is a platelet counterreceptor for P-selectin. J Exp Med 190:803–814

    Article  PubMed  CAS  Google Scholar 

  22. San Antonio JD, Zoeller JJ, Habursky K, Turner K, Pimtong W, Burrows M, Choi S, Basra S, Bennett JS, DeGrado WF, Iozzo RV (2009) A key role for the integrin alpha2beta1 in experimental and developmental angiogenesis. Am J Pathol 175(3):1338–1347

    Article  PubMed  CAS  Google Scholar 

  23. Funahashi Y, Sugi NH, Semba T, Yamamoto Y, Hamaoka S, Tsukahara-Tamai N, Ozawa Y, Tsuruoka A, Nara K, Takahashi K, Okabe T, Kamata J, Owa T, Ueda N, Haneda T, Yonaga M, Yoshimatsu K, Wakabayashi T (2002) Sulfonamide derivative, E7820, is a unique angiogenesis inhibitor suppressing an expression of integrin alpha2 subunit on endothelium. Cancer Res 62(21):6116–6123

    PubMed  CAS  Google Scholar 

  24. Furrer J, Luy B, Basrur V, Roberts DD, Barchi JJ Jr (2006) Conformational analysis of an alpha3beta1 integrin-binding peptide from thrombospondin-1: implications for antiangiogenic drug design. J Med Chem 49(21):6324–6333

    Article  PubMed  CAS  Google Scholar 

  25. Magnusson MK, Mosher DF (1998) Fibronectin: structure, assembly, and cardiovascular implications. Arterioscler Thromb Vasc Biol 18:1363–1370

    Article  PubMed  CAS  Google Scholar 

  26. Clark RA, Dellapelle P, Manseua E, Lanigan JM, Dvorak HF, Colvin RB (1982) Blood vessel fibronectin increases in conjunction with endothelial cell proliferation and capillary in growth during wound healing. J Invest Dermatol 79:269–276

    Article  PubMed  CAS  Google Scholar 

  27. Neri D, Carnimolla B, Nissim A et al (1997) Targeting by affinity-matured recombinant antibody fragments of an angiogenesis associated fibronectin isoform. Nat Biotechnol 15:1271–1275

    Article  PubMed  CAS  Google Scholar 

  28. George EL, Georges EN, Patel-King RS, Rayburn H, Hynes RO (1993) Defects in mesodermal migration and vascular development in fibronectin-deficient mice. Development 119:1079–1091

    PubMed  CAS  Google Scholar 

  29. Klein S, de Fougerolles AR, Blaikie P, Khan L, Pepe A, Green CD, Koteliansky V, Giancotti FG (2002) α5β1 integrin activates an NF-κB-dependent program of gene expression important for angiogenesis and inflammation. Mol Cell Biol 22(16):5912–5922

    Article  PubMed  CAS  Google Scholar 

  30. Varner J, Mousa S (1998) Antagonists of vascular cell integrin α5β1 inhibit angiogenesis. Circulation 98(17 Suppl 1):1–795. 4166

    Google Scholar 

  31. Mousa S, Mohamed S, Sallhear J, Jadhav PK, Varner J (1999) Anti-angiogenesis efficacy of small molecule a5b1 integrin antagonist, SJ749. Blood 94(10 Suppl I):620a. 2755

    Google Scholar 

  32. Umeda N, Kachi S, Akiyama H, Zahn G, Vossmeyer D, Stragies R, Campochiaro PA (2006) Suppression and regression of choroidal neovascularization by systemic administration of an alpha5beta1 integrin antagonist. Mol Pharmacol 69(6):1820–1828

    Article  PubMed  CAS  Google Scholar 

  33. Raboisson P, Manthey CL, Chaikin M, Lattanze J, Crysler C, Leonard K, Pan W, Tomczuk BE, Marugán JJ (2006) Novel potent and selective alphavbeta3/alphavbeta5 integrin dual antagonists with reduced binding affinity for human serum albumin. Eur J Med Chem 41:847–861

    Article  PubMed  CAS  Google Scholar 

  34. Benfatti F, Cardillo G, Fabbroni S, Galzerano P, Gentilucci L, Juris R, Tolomelli A, Baiula M, Spartà A, Spampinato S (2007) Synthesis and biological evaluation of non-peptide alpha(v)beta(3)/alpha(5)beta(1) integrin dual antagonists containing 5,6-dihydropyridin-2-one scaffolds. Bioorg Med Chem 15:7380–7390

    Article  PubMed  CAS  Google Scholar 

  35. Albelda SM, Mette SA, Elder DE et al (1990) Integrin distribution in malignant melanoma: association of the b3 subunit with tumor progression. Cancer Res 50:6757–6764

    PubMed  CAS  Google Scholar 

  36. Nip J, Brondt P (1995) The role of the integrin vitronectin receptor avb3 in melanoma metastasis. Cancer Metastasis Rev 14:241–252

    Article  PubMed  CAS  Google Scholar 

  37. Pechkovsky DV, Scaffidi AK, Hackett TL, Ballard J, Shaheen F, Thompson PJ, Thannickal VJ, Knight DA (2008) Transforming growth factor beta1 induces alphavbeta3 integrin expression in human lung fibroblasts via a beta3 integrin-, c-Src-, and p38 MAPK-dependent pathway. J Biol Chem 283(19):12898–12908

    Article  PubMed  CAS  Google Scholar 

  38. Srivatsa SS, Tsao P, Holmes DR, Schwartz RS, Mousa SA (1997) Selective αvβ3 integrin blockade potently limits neointimal hyperplasia and lumen stenosis following deep coronary arterial stent injury. Cardiovasc Res 36:408–428

    Article  PubMed  CAS  Google Scholar 

  39. Zee R, Passeri J, Barry J, Cheresh D, Isner J (1996) A neutralizing antibody to the avb3 integrin reduces neointimal thickening in a balloon-injured iliac artery. Circulation 94(8):1505

    Google Scholar 

  40. Coleman PJ, Brashear KM, Askew BC, Hutchinson JH, McVean CA, Duong LT, Feuston BP, Fernandez-Metzler C, Gentile MA, Hartman GD, Kimmel DB, Leu C-T, Lipfert L, Merkle K, Pennypacker B, Prueksaritanont T, Rodan GA, Wesolowski GA, Rodan SB, Duggan ME (2004) Nonpeptide αvβ3 antagonists. Part 11: discovery and preclinical evaluation of potent αvβ3 antagonists for the prevention and treatment of osteoporosis. J Med Chem 47:4829–4837

    Article  PubMed  CAS  Google Scholar 

  41. Whitman DB, Askew BC, Duong LT, Fernandez-Metzler C, Halczenko W, Hartman GD, Hutchinson JH, Leu C-T, Prueksaritanont T, Rodan GA, Rodan SB, Duggan ME (2004) Nonpeptide αvβ3 antagonists. Part 9: improved pharmacokinetic profile through the use of an aliphatic, des-amide backbone. Bioorg Med Chem Lett 14:4411–4415

    Article  PubMed  CAS  Google Scholar 

  42. Perkins JJ, Duong LT, Fernandez-Metzler C, Hartman GD, Kimmel DB, Leu C-T, Lynch JJ, Prueksaritanont T, Rodan GA, Rodan SB, Duggan ME, Meissner RS (2003) Non-peptide αvβ3 antagonists: identification of potent, chain-shortened RGD mimetics that incorporate a central pyrrolidinone constraint. Bioorg Med Chem Lett 13:4285–4288

    Article  PubMed  CAS  Google Scholar 

  43. Breslin MJ, Duggan ME, Halczenko W, Hartman GD, Duong LT, Fernandez-Metzler C, Gentile MA, Kimmel DB, Leu C-T, Merkle K, Prueksaritanont T, Rodan GA, Rodan SB, Hutchinson JH (2004) Nonpeptide αvβ3 antagonists. Part 10: in vitro and in vivo evaluation of a potent 7-methyl substituted tetrahydro-[1,8]naphthyridine derivative. Bioorg Med Chem Lett 14:4515–4518

    Article  PubMed  CAS  Google Scholar 

  44. Hutchinson JH, Halczenko W, Brashear KM, Breslin MJ, Coleman PJ, Duong LT, Fernandez-Metzler C, Gentile MA, Fisher JE, Hartman GD, Huff JR, Kimmel DB, Leu C-T, Meissner RS, Merkle K, Nagy R, Pennypacker B, Perkins JJ, Prueksaritanont T, Rodan GA, Varga SL, Wesolowski GA, Zartman AE, Rodan SB, Duggan ME (2003) Nonpeptide αvβ3 antagonists. 8. In vitro and in vivo evaluation of a potent v3 antagonist for the prevention and treatment of osteoporosis. J Med Chem 46:4790–4798

    Article  PubMed  CAS  Google Scholar 

  45. Bubenik M, Meerovitch K, Bergeron F, Attardo G, Chan L (2003) Thiophene-based vitronectin receptor antagonists. Bioorg Med Chem Lett 13:503–506

    Article  PubMed  CAS  Google Scholar 

  46. Meerovitch K, Bergeron F, Leblond L, Grouix B, Poirier C, Bubenik M, Chan L, Gourdeau H, Bowlin T, Attardo G (2003) A novel RGD antagonist that targets both avß3 and a5ß1 induces apoptosis of angiogenic endothelial cells on type I collagen. Vascul Pharmacol 40:77–89

    Article  PubMed  CAS  Google Scholar 

  47. Cacciari B, Spalluto G (2005) Non peptidic αvβ3 antagonists: recent developments. Curr Med Chem 12:51–70

    Article  PubMed  CAS  Google Scholar 

  48. Ishikawa M, Kubota D, Yamamoto M, Kuroda C, Iguchi M, Koyanagi A, Murakami S, Ajito K (2006) Tricyclic pharmacophore-based molecules as novel integrin αvβ3 antagonists. Part 2: synthesis of potent αvβ3/αIIbβ3 dual antagonists. Bioorg Med Chem 14:2109–2130

    Article  PubMed  CAS  Google Scholar 

  49. Urbahns K, Härter M, Albers M, Schmidt D, Stelte-Ludwig B, Brüggemeier U, Vaupel A, Gerdes C (2002) Biphenyls as potent vitronectin receptor antagonists. Bioorg Med Chem Lett 12:205–208

    Article  PubMed  CAS  Google Scholar 

  50. Ishikawa M, Hiraiwa Y, Kubota D, Tsushima M, Watanabe T, Murakami S, Ouchi S, Ajito K (2006) Tricyclic pharmacophore-based molecules as novel integrin αvβ3 antagonists. Part III: synthesis of potent antagonists with αvβ3/αIIbβ3 dual activity and improved water solubility. Bioorg Med Chem 14:2131–2150

    Article  PubMed  CAS  Google Scholar 

  51. Penning TD, Russell MA, Chen BB, Chen HY, Desai BN, Docter SH, Edwards DJ, Gesicki GJ, Liang C-D, Malecha JW, Yu SS, Engleman VW, Freeman SK, Hanneke ML, Shannon KE, Westlin MM, Nickols GA (2004) Synthesis of cinnamic acids and related isosteres as potent and selective αvβ3 receptor antagonists. Bioorg Med Chem Lett 14:1471–1476

    Article  PubMed  CAS  Google Scholar 

  52. Iwama S, Kitano T, Fukuya F, Honda Y, Sato Y, Notake M, Morie T (2004) Discovery of a potent and selective αvβ3 integrin antagonist with strong inhibitory activity against neointima formation in rat balloon injury model. Bioorg Med Chem Lett 14:2567–2570

    PubMed  CAS  Google Scholar 

  53. Lange UEW, Backfisch G, Delzer J, Geneste H, Graef C, Hornberger W, Kling A, Lauterbach A, Subkowski T, Zechel C (2002) Synthesis of highly potent and selective hetaryl ureas as integrin αvβ3-Receptor antagonists. Bioorg Med Chem Lett 12:1379–1382

    Article  PubMed  CAS  Google Scholar 

  54. Dayam R, Aiello F, Deng J, Wu Y, Garofalo A, Chen X, Neamati N (2006) Discovery of small molecule integrin αvβ3 antagonists as novel anticancer agents. J Med Chem 49:4526–4534

    Article  PubMed  CAS  Google Scholar 

  55. Wilkinson-Berka JL, Jones D, Taylor G, Jaworski K, Kelly DJ, Ludbrook SB, Willette RN, Kumar S, Gilbert RE (2006) SB-267268, a nonpeptidic antagonist of alpha(v)beta3 and alpha(v)beta5 integrins, reduces angiogenesis and VEGF expression in a mouse model of retinopathy of prematurity. Invest Ophthalmol Vis Sci 47(4):1600–1605

    Article  PubMed  Google Scholar 

  56. Arosio D, Belvisi L, Colombo L, Colombo M, Invernizzi D, Manzoni L, Potenza D, Serra M, Castorina M, Pisano C, Scolastico C (2008) A potent integrin antagonist from a small library of cyclic RGD pentapeptide mimics including benzyl-substituted azabicycloalkane amino acids. ChemMedChem 3(10):1589–1603

    Article  PubMed  CAS  Google Scholar 

  57. Perron-Sierra F, Saint Dizier D, Bertrand M, Genton A, Tucker GC, Casara P (2002) Substituted benzocyloheptenes as potent and selective αv integrin antagonists. Bioorg Med Chem Lett 12:3291–3296

    Article  PubMed  CAS  Google Scholar 

  58. Nadrah K, Dolenc MS (2005) Dual antagonists of integrins. Curr Med Chem 12:1449–1466

    Article  PubMed  CAS  Google Scholar 

  59. Raboisson P, DesJarlais RL, Reed R, Lattanze J, Chaikin M, Manthey CL, Tomczuk BE, Marugan JJ (2007) Identification of novel short chain 4-substituted indoles as potent antagonist using structure-based drug design. Eur J Med Chem 42:334–343

    Article  PubMed  CAS  Google Scholar 

  60. Hutchinson JH, Halczenko W, Brashear KM et al (2003) Nonpeptide alphavbeta3 antagonists. 8. In vitro and vivo evaluation of a potent alphavbeta3 antagonist for the prevention and treatment of osteoporosis. J Med Chem 46:4790–4798

    Article  PubMed  CAS  Google Scholar 

  61. Horton MA, Taylor ML, Arnett TR, Helfrich MH (1991) Arg-Gly-Asp (RGD) peptides and the antivitronectin receptor antibody 23C6 inhibit dentine resorption and cell spreading by osteoclasts. Exp Cell Res 195:368–375

    Article  PubMed  CAS  Google Scholar 

  62. Keenan RM, Miller WH, Kwon C et al (1997) Discovery of potent non-peptide vitronectin αvβ3 antagonists. J Med Chem 40:2289–2292

    Article  PubMed  CAS  Google Scholar 

  63. Corbett JW, Graciani NR, Mousa SA, Degrado WF (1997) Solid-phase synthesis of a selective αvβ3 integrin antagonist library. Bioorg Med Chem Lett 7:1371–1376

    Article  CAS  Google Scholar 

  64. Knolle J, Breiphol G, Guba W et al (1997) Design and synthesis of potent and selective peptidomimetic vitronectin receptor antagonists. In: Tam JP, Kaumaya TP (eds) Peptide chemistry structure and biology. Proceedings of the 15th American peptide symposium, Mayflower Scientific Ltd, Kingswinford, England, Abstract L102

    Google Scholar 

  65. Kerr JS, Wexler RS, Mousa SA et al (1999) Novel small molecule αv integrin antagonists: comparative anti-cancer efficacy with known angiogenesis inhibitors. Anticancer Res 19:959–968

    PubMed  CAS  Google Scholar 

  66. Mousa SA, Lorelli W, Mohamed S, Batt DG, Jadhav PK, Reilly TM (1999) αvβ3 Integrin binding affinity and specificity of SM256 in various species. J Cardiovasc Pharmacol 33:641–646

    Article  PubMed  CAS  Google Scholar 

  67. Shimamura N, Matchett G, Yatsushige H, Ohkuma H, Zhang J (2006) Inhibition of integrin alphavbeta3 ameliorates focal cerebral ischemic damage in the rat middle cerebral artery occlusion model. Stroke 37(7):1902–1909

    Article  PubMed  CAS  Google Scholar 

  68. Penning TD, Khilevich A, Chen BB, Russell MA, Boys ML, Wang Y, Duffin T, Engleman VW, Finn MB et al (2006) Synthesis of pyrazoles and isoxazoles as potent alpha(v)beta3 receptor antagonists. Bioorg Med Chem Lett 16(12):3156–3161

    Article  PubMed  CAS  Google Scholar 

  69. Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin αvβ3 for angiogenesis. Science 264:569–571

    Article  PubMed  CAS  Google Scholar 

  70. Sanders LC, Felding-Habermann B, Mueller BM et al (1992) Role of αv integrins and vitronectin in human melanoma cell growth. Cold Spring Harb Symp Quant Biol 57:233–240

    Article  Google Scholar 

  71. Brooks PC, Strömbland S, Klemke R et al (1995) Anti-integrin αvβ3 blocks human breast cancer growth and angiogenesis in human skin. J Clin Invest 96:1815–1822

    Article  PubMed  CAS  Google Scholar 

  72. Hieken TJ, Farolan M, Ronan SG et al (1996) β3 integrin expression in melanoma predicts subsequent metastasis. J Surg Res 63:169–173

    Article  PubMed  CAS  Google Scholar 

  73. Max R, Gerritsen R, Nooijen P et al (1997) Immunohistochemical analysis of integrin αvβ3 expression on tumor-associated vessels of human carcinomas. Int J Cancer 71:320–324

    Article  PubMed  CAS  Google Scholar 

  74. Clark RA, Tonnesen MG, Gailit J et al (1996) Transient functional expression of alphaVbeta 3 on vascular cells during wound repair. Am J Pathol 148:1407–1421

    PubMed  CAS  Google Scholar 

  75. Eliceiri BP, Klemke R, Strömbland S, Cheresh DA (1999) Integrin αvβ3 requirement for sustained mitogenactivated protein kinase activity during angiogenesis. J Cell Biol 140:1255–1263

    Google Scholar 

  76. Friedlander M, Brooks PC, Shaffer RW et al (1995) Definition of two angiogenic pathways by distinct αv integrins. Science 270:1500–1502

    Article  Google Scholar 

  77. Eliceiri BP, Cheresh DA (1999) The role of αv integrins during angiogenesis: insights into potential mechanisms of action and clinical development. J Clin Invest 103:1227–1230

    Article  PubMed  CAS  Google Scholar 

  78. Luna J, Tobe T, Mousa SA et al (1996) Antagonists of integrin αvβ3 inhibit retinal neovascularization in a murine model. Lab Invest 75:563–573

    PubMed  CAS  Google Scholar 

  79. Ogawara K, Kułdo JM, Oosterhuis K, Kroesen BJ, Rots MG, Trautwein C, Kimura T, Haisma HJ, Molema G (2006) Functional inhibition of NF-kappaB signal transduction in alphavbeta3 integrin expressing endothelial cells by using RGD-PEG-modified adenovirus with a mutant IkappaB gene. Arthritis Res Ther 8(1):R32

    Article  PubMed  CAS  Google Scholar 

  80. Curnis F, Sacchi A, Gasparri A, Longhi R, Bachi A, Doglioni C, Bordignon C, Traversari C, Rizzardi GP, Corti A (2008) Isoaspartate-glycine-arginine: a new tumor vasculature-targeting motif. Cancer Res 68(17):7073–7082

    Article  PubMed  CAS  Google Scholar 

  81. Zhao H, Wang JC, Sun QS, Luo CL, Zhang Q (2009) RGD-based strategies for improving antitumor activity of paclitaxel-loaded liposomes in nude mice xenografted with human ovarian cancer. J Drug Target 17(1):10–18

    Article  PubMed  CAS  Google Scholar 

  82. Garanger E, Boturyn D, Dumy P (2007) Tumor targeting with RGD peptide ligands-design of new molecular conjugates for imaging and therapy of cancers. Anticancer Agents Med Chem 7(5):552–558

    Article  PubMed  CAS  Google Scholar 

  83. Wu Z, Li ZB, Chen K, Cai W, He L, Chin FT, Li F, Chen X (2007) micro PET of tumor integrin alphavbeta3 expression using 18F-labeled PEGylated tetrameric RGD peptide (18 F-FPRGD4). J Nucl Med 48(9):1536–1544

    Article  PubMed  CAS  Google Scholar 

  84. Lin H-Y, Davis FB, Gordinier JK, Martino LJ, Davis PJ (2001) Thyroid hormone induces activation of mitogen-activated protein kinase. Am J Physiol 276:C1014–C1024

    Google Scholar 

  85. Hercbergs AA, Goyal LK, Suh JH, Lee S, Reddy CA, Cohen BH, Stevens GH, Reddy SK, Peereboom DM, Elson PJ, Gupta MK, Barnett GH (2003) Propylthiouracil-induced chemical hypothyroidism with high-dose tamoxifen prolongs survival in recurrent high grade glioma: a Phase I/II study. Anticancer Res 23:617–626

    PubMed  CAS  Google Scholar 

  86. Cristofanilli M, Yamamura Y, Kau S-W, Bevers T, Strom S, Patangan M, Hsu L, Krishnamurthy S, Theriault RL, Hortobagyi GN (2005) Thyroid hormone and breast carcinoma. Primary hypothyroidism is associated with a reduced incidence of primary breast carcinoma. Cancer 103:1122–1128

    Article  PubMed  CAS  Google Scholar 

  87. Albert JM, Cao C, Geng L, Leavitt L, Hallahan DE, Lu B (2006) Integrin alpha v beta 3 antagonist Cilengitide enhances efficacy of radiotherapy in endothelial cell and non-small-cell lung cancer models. Int J Radiat Oncol Biol Phys 65(5):1536–1543

    Article  PubMed  CAS  Google Scholar 

  88. Monnier Y, Farmer P, Bieler G, Imaizumi N, Sengstag T, Alghisi GC, Stehle JC, Ciarloni L, Andrejevic-Blant S et al (2008) CYR61 and alphaVbeta5 integrin cooperate to promote invasion and metastasis of tumors growing in preirradiated stroma. Cancer Res 68(18):7323–7331

    Article  PubMed  CAS  Google Scholar 

  89. Lark MW, Stroup GB, Dodds RA et al (2001) Antagonism of the osteoclast vitronectin receptor with an orally active non peptide inhibitor prevents cancellous bone loss in the ovariectomized rat. J Bone Miner Res 16:319–327

    Article  PubMed  CAS  Google Scholar 

  90. Davis J, Warwick J, Totty N, Philp R, Helfich M, Horton M (1989) The osteoclast functional antigen, implicated in regulation of bone resorption, is biochemically related to the vitronectin receptor. J Cell Biol 109:1817–1826

    Article  Google Scholar 

  91. Arap W, Pasqualin A, Ruoslahti E (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279:377–380

    Article  PubMed  CAS  Google Scholar 

  92. Raboisson P, Manthey CL, Chaikin M, Lattanze J, Crysler C, Leonard K, Pan W, Tomczuk BE, Marugan JJ (2006) Novel potent and selective alphavbeta3/alphavbeta5 integrin dual antagonists with reduced binding affinity for human serum albumin. Eur J Med Chem 41(7):847–861

    Article  PubMed  CAS  Google Scholar 

  93. Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD, King CP (1998) Detection of tumor angiogenesis in vivo by αvβ3-targeted magnetic resonance imaging. Nat Med 4(5):623–626

    Article  PubMed  CAS  Google Scholar 

  94. Sivolapenko GB, Skarlos D, Pectasides D et al (1998) Imaging of metastatic melanoma utilising a technetium-99m labelled RGD-containing synthetic peptide. Eur J Nucl Med 25(10):1383–1389

    Article  PubMed  CAS  Google Scholar 

  95. Haubner R, Wester HJ, Reuning U et al (1999) Radiolabeled αvβ3 integrin antagonists: a new class of tracer for tumor targeting. J Nucl Med 40(6):1061–1071

    PubMed  CAS  Google Scholar 

  96. Dijkgraaf I, Kruijtzer JA, Frielink C, Soede AC, Hilbers HW, Oyen WJ, Corstens FH, Liskamp RM, Boerman OC (2006) Synthesis and biological evaluation of potent alphavbeta3-integrin receptor antagonists. Nucl Med Biol 33(8):953–961

    Article  PubMed  CAS  Google Scholar 

  97. Chen X, Sievers E, Hou Y, Park R, Tohme M, Bart R, Bremner R, Bading JR, Conti PS (2005) Integrin αvβ3-targeted imaging of lung cancer. Neoplasia 7(3):271–279

    Article  PubMed  CAS  Google Scholar 

  98. Silvestri E, Schiavo L, Lombardi A, Goglia F (2005) Thyroid hormones as molecular determinants of thermogenesis. Acta Physiol Scand 184:265–283

    Article  PubMed  CAS  Google Scholar 

  99. Wrutniak-Cabello C, Casas F, Cabello G (2001) Thyroid hormone action in mitochondria. J Mol Endocrinol 26:67–77

    Article  PubMed  CAS  Google Scholar 

  100. Huang CJ, Geller HM, Green WL, Craelius W (1999) Acute effects of thyroid hormone analogs on sodium currents in neonatal rat myocytes. J Mol Cell Cardiol 31:881–893

    Article  PubMed  CAS  Google Scholar 

  101. Sakaguchi Y, Cui G, Sen L (1996) Acute effects of thyroid hormone on inward rectifier potassium channel currents in guinea pig ventricular myocytes. Endocrinology 137:4744–4751

    Article  PubMed  CAS  Google Scholar 

  102. Incerpi S, Luly P, De Vito P, Farias RN (1999) Short-term effects of thyroid hormones on the Na/H antiport in L-6 myoblasts: high molecular specificity for 3,5,3′-triiodo-L-thyronine. Endocrinology 140:683–689

    Article  PubMed  CAS  Google Scholar 

  103. Ashizawa K, Cheng S (1992) Regulation of thyroid hormone receptor-mediated transcription by a cytosol protein. Proc Natl Acad Sci USA 89:9277–9281

    Article  PubMed  CAS  Google Scholar 

  104. Vie MP, Evrfard C, Osty J, Breton-Gilet A, Blanchet P, Pomerance M, Rouget P, Francon J, Blondeau JP (1997) Purification, molecular cloning, and functional expression of the human nicotinamide-adenine dinucleotide phosphate-regulated thyroid hormone-binding protein. Mol Endocrinol 11:1728–1736

    Article  PubMed  CAS  Google Scholar 

  105. Bergh JJ, Lin H-Y, Lansing L, Mohamed SN, Davis FB, Mousa S, Davis PJ (2005) Integrin αvβ3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angiogenesis. Endocrinology 146:2864–2871

    Article  PubMed  CAS  Google Scholar 

  106. Davis PJ, Davis FB, Cody V (2005) Membrane receptors mediating thyroid hormone action. Trends Endocrinol Metab 16:429–435

    Article  PubMed  CAS  Google Scholar 

  107. Mousa SA, O’Connor L, Davis FB, Davis PJ (2006) Proangiogenesis action of the thyroid hormone analog 3,5-diiodothyropropionic acid (DITPA) is initiated at the cell surface and is integrin-mediated. Endocrinology 147:1602–1607

    Article  PubMed  CAS  Google Scholar 

  108. D’Arezzo S, Incerpi S, Davis FB, Acconia F, Marino M, Farias RN, Davis PJ (2004) Rapid nongenomic effects of 3,5,3′-triiodo-L-thyronine on the intracellular pH of L-6 myoblasts are mediated by intracellular calcium mobilization and kinase pathways. Endocrinology 145:5694–5703

    Article  PubMed  CAS  Google Scholar 

  109. Davis FB, Mousa SA, O’Connor L, Mohamed S, Lin H-Y, Cao HJ, Davis P (2004) Proangiogenic action of thyroid hormone is fibroblast growth factor-dependent and is initiated at the cell surface. Circ Res 94:1500–1506

    Article  PubMed  CAS  Google Scholar 

  110. Mousa SA, O’Connor LJ, Bergh JJ, Davis FB, Scanlan TS, Davis PJ (2005) The proangiogenic action of thyroid hormone analogue GC-1 is initiated at an integrin. J Cardiovasc Pharmacol 46:356–360

    Article  PubMed  CAS  Google Scholar 

  111. Tang H-Y, Lin H-Y, Zhang S, Davis FB, Davis PJ (2004) Thyroid hormone causes mitogen-activated protein kinase-dependent phosphorylation of the nuclear estrogen receptor. Endocrinology 145:3265–3272

    Article  PubMed  CAS  Google Scholar 

  112. Davis FB, Tang H-Y, Shih A, Keating T, Lansing L, Hercbergs A, Fenstermaker RA, Mousa A, Mousa SA, Davis PJ, Lin H-Y (2006) Acting via a cell surface receptor, thyroid hormone is a growth factor for glioma cells. Cancer Res 66(14):7270–7275

    Article  PubMed  CAS  Google Scholar 

  113. Davis PJ, Davis FB, Mousa SA, Luidens MK, Lin HY (2011) Membrane receptor for thyroid hormone: physiologic and pharmacologic implications. Annu Rev Pharmacol Toxicol 51:99–115.

    Article  PubMed  CAS  Google Scholar 

  114. Mousa SA, Bergh JJ, Dier E, Rebbaa A, O’Connor LJ, Yalcin M, Aljada A, Dyskin E, Davis FB, Lin HY, Davis PJ (2008) Tetraiodothyroacetic acid, a small molecule integrin ligand, blocks angiogenesis induced by vascular endothelial growth factor and basic fibroblast growth factor. Angiogenesis 11(2):183–190

    Article  PubMed  CAS  Google Scholar 

  115. Xiong J-P, Stehle T, Diefenbach B, Zhang R, Dunker R, Scott DL, Joachimiak A, Goodman SL, Arnaout MA (2001) Crystal structure of the extracellular segment of integrin αvβ3. Science 294:339–345

    Article  PubMed  CAS  Google Scholar 

  116. Lin HY, Sun M, Tang HY, Lin C, Luidens MK, Mousa SA, Incerpi S, Drusano GL, Davis FB, Davis PJ (2009) L-Thyroxine vs. 3,5,3´-triiodo-L-thyronine and cell proliferation: activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Am J Physiol Cell Physiol 296(5):C980–C991.

    Article  PubMed  CAS  Google Scholar 

  117. Tang HY, Lin HY, Zhang S, Davis FB, Davis PJ (2004) Thyroid hormone causes ­mitogen-activated protein kinase-dependent phosphorylation of the nuclear estrogen receptor. Endocrinology 145(7):3265–3272

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaker A. Mousa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mousa, S.A., Davis, P.J. (2013). Integrin Antagonists and Angiogenesis. In: Mousa, S., Davis, P. (eds) Angiogenesis Modulations in Health and Disease. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6467-5_11

Download citation

Publish with us

Policies and ethics