Skip to main content
Log in

The role of the integrin vitronectin receptor, αvβ3 in melanoma metastasis

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Koh HK: Cutaneous melanoma. New England Journal of Medicine 325: 171–182, 1991

    Google Scholar 

  2. Armstrong BK, English DR: Epidemiologic studies. In: Balch CM (ed) Cutaneous Melanoma. J.B. Lippincott, Philadelphia, 1992, pp 12–26

    Google Scholar 

  3. Morton DL, Wong JH, Kirkwood JM, Parker RG: Malignant melanoma. In: Holland JF, Frei EI, Bast RCJ, Kufe DW, Morton DL, Weichselbaum RR (eds) Cancer Medicine. Lea & Febiger, Philadelphia, 1993, pp 1793–1824

    Google Scholar 

  4. Balch CM, Houghton A, Peters L: Cutaneous melanoma. In: DeVita VT, Hellman S, Rosenberg SA (eds) Cancer Principles & Practice of Oncology. J.B. Lippincott Co., Philadelphia, 1993, pp 1499–1542

    Google Scholar 

  5. Herlyn M: Human melanoma: development and progression. Cancer Metastasis Rev 9: 101–112, 1990

    Google Scholar 

  6. Clark WHJ, Elder DE, Van Horn M: The biologic forms of malignant melanoma. Human Path 17: 443–450, 1986

    Google Scholar 

  7. Clark WHJ, Elder DE, Guerry DI, Epstein MN, Greene MH, Van Horn M: A study of tumor progression: the precursor lesions of superficial spreading and nodular melanoma. Human Path 15: 1147–1165, 1984

    Google Scholar 

  8. Clark WHJ: Tumor progression and the nature of cancer. Br J Cancer 64: 631–644, 1991

    Google Scholar 

  9. Shih IM, Herlyn M: Role of growth factors and their receptors in the development and progression of melanoma. J Invest Derm 100: 196–203, 1993

    Google Scholar 

  10. Rodeck U: Growth factor independence and growth regulatory pathways in human melanoma development. Cancer Metastasis Rev 12: 219–226, 1993

    Google Scholar 

  11. Lu C, Kerbel RS: Cytokines, growth factors and the loss of negative growth controls in the progression of human cutaneous malignant melanoma. Curr Opin Oncol 6: 212–220, 1994

    Google Scholar 

  12. Johnson JP, Rothbacher U, Sers C: The progression associated antigen MUC18: a unique member of the immunoglobulin supergene family. Melanoma Res 3: 337–340, 1993

    Google Scholar 

  13. Johnson JP: Cell adhesion molecules of the immunoglobulin supergene family and their role in malignant transformation and progression to metastatic disease. Cancer Metastasis Rev 10: 11–22, 1991

    Google Scholar 

  14. Pignatelli M, Vessey CJ: Adhesion molecules: novel molecular tools in tumor pathology. Human Path 25: 849–856, 1994

    Google Scholar 

  15. Klein CE, Steinmayer T, Kaufmann D, Weber L, Brocker EB: Identification of a melanoma progression antigen as integrin VLA-2. J Invest Derm 96: 281–284, 1991

    Google Scholar 

  16. Natali PG, Nicotra MR, Bartolazzi A, Cavaliere R, Bigotti A: Integrin expression in cutaneous malignant melanoma: association of the α3/β1 heterodimer with tumor progression. Int J Cancer 54: 68–72, 1993

    Google Scholar 

  17. Gehlsen KR, Davis GE, Sriramarao P: Integrin expression in human melanoma cells with differing invasive and metastatic properties. Clin Exp Metastasis 10: 111–120, 1992

    Google Scholar 

  18. Elder DE, Rodeck U, Thurin J, Cardillo F, Jr WHC: Antigenic profile of tumor progression in human melanocytic nevi and melanomas. Cancer Res 49: 5091–5096, 1989

    Google Scholar 

  19. deVries TJ, Quax PH, Denijn M, Verrijp KN, Verheijen JH, Verspaget HW, Weidle UH, Ruiter DJ, vanMuijen GNP: Plasminogen activators, their inhibitors and urokinase receptor emerge in late stages of melanocytic tumor progression. Am J Path 144: 70–81, 1994

    Google Scholar 

  20. Albelda SM, Mette SA, Elder DE, Stewart R, Damjanovich L, Herlyn M, Buck CA: Integrin distribution in malignant melanoma: association of the β3 subunit with tumor progression. Cancer Res 50: 6757–6764, 1990

    Google Scholar 

  21. Sanders LC, Felding-Habermann B, Mueller BM, Cheresh DA: Role of αv integrins and vitronectin in human melanoma cell growth. Cold Spring Harbor Symposia on Quantitative Biology LVII: 233–240, 1992

    Google Scholar 

  22. Boukerche H, Benchaibi M, Berthier-Vergnes O, Lizard G, Bailly M, McGregor J: Two human melanoma cell-line variants with enhancedin vivo tumor growth and metastatic capacity do not express the β3 integrin subunit. Eur J Biochem 220: 485–491, 1994

    Google Scholar 

  23. Brunner N, Pyke C, Hansen CH, Romer J, Grondahl-Hansen J, Dano K: Urokinase plasminogen activator (uPA) and its type 1 inhibitor (PAI-1): regulators of proteolysis during cancer invasion and prognostic parameters in breast cancer. Cancer Treat Res 71: 299–309, 1994

    Google Scholar 

  24. Mignatti P, Rifkin DB: Biology and biochemistry of proteinases in tumor invasion. Physiol Rev 73: 161–187, 1993

    Google Scholar 

  25. Kwaan HC: The plasminogen-plasmin system in malignancy. Cancer Metastasis Rev 11: 291–311, 1992

    Google Scholar 

  26. Delbaldo C, Masouye I, Saurat J-H, Vassalli J-D, Sappino A-P: Plasminogen activation in melanocytic neoplasia. Cancer Res 54: 4547–4552, 1994

    Google Scholar 

  27. Blasi F: Urokinase and urokinase receptor: a paracrine/autocrine system regulating cell migration and invasiveness. Bioessays 15: 105–111, 1993

    Google Scholar 

  28. Bu G, Warshawsky I, Schwartz AL: Cellular receptors for the plasminogen activators. Blood 83: 3427–3436, 1994

    Google Scholar 

  29. Felding-Habermann B, Cheresh DA: Vitronectin and its receptors. Curr Opin Cell Biol 5: 864–868, 1993

    Google Scholar 

  30. McCormick BA, Zetter BR: Adhesive interactions in angiogenesis and metastasis. Pharm Ther 53: 239–260, 1992

    Google Scholar 

  31. Albelda SM: Role of integrins and other cell adhesion molecules in tumor progression and metastasis. Lab Invest 68: 4–17, 1993

    Google Scholar 

  32. Vleminckx K, Vakae LJ, Mareel M, Fiers W, van Roy F: Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell 66: 107–119, 1991

    Google Scholar 

  33. Liotta L, Steeg P, Stetler-Stevenson W: Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64: 327–336, 1991

    Google Scholar 

  34. Stetler-Stevenson WG, Aznavoorian S, Liotta LA: Tumor cell interactions with the extracellular matrix during invasion and metastasis. Ann Rev Cell Biol 9: 541–573, 1993

    Google Scholar 

  35. Werb Z, Tremble PM, Behrendtsen O, Crowley E, Damsky CH: Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression. J Cell Biol 109: 877–889, 1989

    Google Scholar 

  36. Nicolson GL: Cancer progression and growth: relationship of paracrine and autocrine growth mechanisms to organ preference of metastasis. Exp Cell Res 204: 171–180, 1993

    Google Scholar 

  37. Juliano RL, Varner JA: Adhesion molecules in cancer: the role of integrins. Curr Opin Cell Biol 5: 812–818, 1993

    Google Scholar 

  38. Marshall JF, Nesbitt SA, Helfrich MH, Horton MA, Polakova K, Hart IR: Integrin expression in human melanoma cell lines: heterogeneity of vitronectin receptor composition and function. Int J Cancer 49: 924–931, 1991

    Google Scholar 

  39. De Nichilo MO, Burns GF: Granulocyte-macrophage and macrophage colony-stimulating factors differentially regulate αv integrin expression on cultured human macrophages. Proc Natl Acad Sci USA 90: 2517–2521, 1993

    Google Scholar 

  40. Ross FP, Chappel J, Alvarez JI, Sander D, Butler WT, Farach-Carson MC, Mintz KA, Gehron RP, Teitelbaum SL, Cheresh DA: Interactions between the bone matrix proteins osteopontin and bone sialoprotein and the osteoclast integrin αvβ3 potentiate bone resorption. J Biol Chem 268: 9901–9907, 1993

    Google Scholar 

  41. Horton M: Vitronectin receptor: tissue specific expression or adaptation to culture? Int J Exp Path 71: 741–759, 1990

    Google Scholar 

  42. Clyman RI, Mauray F, Kramer RH: β1 and β3 integrins have different roles in the adhesion and migration of vascular smooth muscle cells on extracellular matrix. Exp Cell Res 200: 272–284, 1992

    Google Scholar 

  43. Bianchine PJ, Burd RP, Metcalfe DD: IL-3-dependent mast cells attach to plate-bound vitronectin. Demonstration of augmented proliferation in response to signals transduced via cell surface vitronectin receptors. J Immunol 149: 3665–3671, 1992

    Google Scholar 

  44. Salcedo R, Patarroyo M: Constitutive αvβ3 integrin-mediated adhesion of human lymphoid B cells to vitronectin substrate. Cell Immunol 160: 165–172, 1995

    Google Scholar 

  45. Brando C, Shevach EM: Engagement of the vitronectin receptor (αvβ3) on murine T cells stimulates tyrosine phosphorylation of a 115-kDa protein. J Immunol 154: 2005–2011, 1995

    Google Scholar 

  46. Rabinowich H, Lin WC, Amoscato A, Herberman RB, Whiteside TL: Expression of vitronectin receptor on human NK cells and its role in protein phosphorylation, cytokine production, and cell proliferation. J Immunol 154:1124–1135, 1995

    Google Scholar 

  47. Lindsberg FP, Lublin DM, Telen MJ, Veile RA, Miller YE, Donis-Keller H, Brown EJ: Rh-related antigen CD47 is the signal-transducer integrin-associated protein. J Biol Chem 269: 1567–1570, 1994

    Google Scholar 

  48. Bartfeld NS, Pasquale EB, Geltosky JE, Languino LR: The αvβ3 integrin associates with a 190-kDa protein that is phosphorylated on tyrosine in response to platelet-derived growth factor. J Biol Chem 268: 17270–17276, 1993

    Google Scholar 

  49. Vuori K, Ruoslahti E: Association of insulin receptor substrate-1 with integrins. Science 266: 1576–1578, 1994

    Google Scholar 

  50. Delannet M, Martin F, Bossy B, Cheresh DA, Reichardt LF, Duband J-L: Specific roles of the αvβ1, αvβ3 and αvβ5 integrins in avian neural crest cell adhesion and migration on vitronectin. Development 120: 2687–2702, 1994

    Google Scholar 

  51. Brooks PC, Clark RAF, Cheresh DA: Requirement of vascular integrin αvβ3 for angiogenesis. Science 264: 569–571, 1994

    Google Scholar 

  52. Leavesley DI, Ferguson GD, Wayner EA, Cheresh DA: Requirement of the integrin β3 subunit for carcinoma cell spreading or migration on vitronectin and fibrinogen. J Cell Biol 117: 1101–1107, 1992

    Google Scholar 

  53. Gailit J, Welch MP, Clark RAF: TGF-β1 stimulates expression of keratinocyte integrins during re-epithelialization of cutaneous wounds. J Invest Derm 103: 221–227, 1994

    Google Scholar 

  54. Brown SL, Lundgren CH, Nordt T, Fujii S: Stimulation of migration of human aortic smooth muscle cells by vitronectin- implications for atherosclerosis. Cardiovascular Res 28: 1815–1820, 1994

    Google Scholar 

  55. Felding-Habermann B, Mueller BM, Romerdahl CA, Cheresh DA: Involvement of integrin αV gene expression in human melanoma tumorigenicity. J Clin Invest 89: 2018–2022, 1992

    Google Scholar 

  56. Montgomery AMP, Reisfeld RA, Cheresh DA: Integrin αvβ3 rescues melanoma cells from apoptosis in three-dimensional dermal collagen. Proc Natl Acad Sci USA 91: 8856–8860, 1994

    Google Scholar 

  57. Brooks PC, Montgomery AMP, Rosenfeld M, Reisfeld RA, Hu T, Klier G, Cheresh DA: Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79: 1157–1164, 1994

    Google Scholar 

  58. Seftor REB, Seftor EA, Gehlsen KR, Stetler-Stevenson WG, Brown PD, Ruoslahti E, Hendrix MJC: Role of αvβ3 integrin in human melanoma cell invasion. Proc Natl Acad Sci USA 89: 1557–1561, 1992

    Google Scholar 

  59. Davis GE: Affinity of integrins for damaged extracellular matrix: αvβ3 binds to denatured collagen type I through RGD sites. Biochem Biophys Res Comm 182: 1025–1031, 1992

    Google Scholar 

  60. Vassalli J-D, Sappino A-P, Belin D: The plasminogen activator/plasmin system. J Clin Invest 88: 1067–1072, 1991

    Google Scholar 

  61. Flaumenhaft R, Abe M, Mignatti P, Rifkin DB: Basic fibroblast growth factor-induced activation of latent transforming growth factor beta in endothelial cells: regulation of plasminogen activator activity. J Cell Biol 118: 901–909, 1992

    Google Scholar 

  62. Skriver L, Nielsen LS, Stephens R, Danø K: Plasminogen activator released as inactive proenzyme from sarcoma virus transformed murine cells. Eur J Biochem 124: 409–414, 1982

    Google Scholar 

  63. Ellis V, Danø K: Plasminogen activation by receptor-bound urokinase. Sem Thromb Hemostasis 17: 194–200, 1991

    Google Scholar 

  64. Heeb MJ, Espana F, Geiger M, Collen D, Stump DC, Griffin JH: Immunological identity of heparin-dependent plasma and urinary protein C inhibitor and plasminogen activator inhibitor-3. J Biol Chem 262: 15813–15816, 1987

    Google Scholar 

  65. Kruithof EK: Plasminogen activator inhibitors - a review. Enzyme 40: 113–121, 1988

    Google Scholar 

  66. Seiffert D, Mimuro J, Schleef RR, Loskutoff DJ: Interactions between type I plasminogen activator inhibitor, extracellular matrix and vitronectin. Cell Diff Dev 32: 287–292, 1990

    Google Scholar 

  67. Ciambrone GJ, McKeown-Longo PJ: Plasminogen activator inhibitor type I stabilizes vitronectin-dependent adhesions in HT-1080 cells. J Cell Biol 111: 2183–2195, 1990

    Google Scholar 

  68. Blasi F: Urokinase and urokinase receptor: a paracrine/autocrine system regulating cell migration and invasiveness. Bioessays 15: 105–111, 1993

    Google Scholar 

  69. Herz J, Clouthier DE, Hammer RE: LDL receptor-related protein internalizes and degrades uPA-PAI-1 complexes and is essential for embryo implantation. Cell 71: 411, 1992

    Google Scholar 

  70. Olson D, Pollanen J, Hoyer-Hansen G, Ronne E, Sakaguchi K, Wun T-C, Appella E, Danø K, Blasi F: Internalization of the urokinase-plasminogen activator inhibitor type-1 complex is mediated by the uPAR. J Biol Chem 267: 9129, 1992

    Google Scholar 

  71. Bu G, Warshawsky I, Schwartz AL: Cellular receptors for plasminogen activators. Blood 83: 3427–3436, 1994

    Google Scholar 

  72. Wei Y, Waltz DA, Rao N, Drummond RJ, Rosenberg S, Chapman HA: Identification of the urokinase receptor as an adhesion receptor for vitronectin. J Biol Chem 269: 32380–32388, 1994

    Google Scholar 

  73. Grondahl-Hansen J, Ralfkiaer E, Kirkeby LT, Kristensen P, Lund LR, Dano K: Localization of urokinase-type plasminogen activator in stromal cells in adenocarcinomas of the colon in humans. Am J Path 138: 111–117, 1991

    Google Scholar 

  74. Pyke C, Kirstensen P, Ralfkiaer E, Grondahl-Hansen J, Eriksen J, Blasi F, Dano K: Urokinase-type plasminogen activator is expressed in stromal cells and its receptor in cancer cells at invasive foci in human colon adenocarcinomas. Am J Path 138: 1059–1067, 1991

    Google Scholar 

  75. Lund LR, Rømer J, Rønne E, Ellis V, Blasi F, Danø K: Urokinase-receptor biosynthesis, mRNA level and gene transcription are increased by transforming growth factor β1 in human A549 lung carcinoma cells. EMBO J 10: 3399–3407, 1991

    Google Scholar 

  76. Shattil S, Haimovich B, Cunningham M, Lipfert L, Parsons J, Ginsberg M, Brugge JS: Tyrosine phosphorylation of pp125FAK in platelets requires coordinated signaling through integrin and agonist receptors. J Biol Chem 269: 14738–14745, 1994

    Google Scholar 

  77. Davis CM, Danehower SC, Laurenza A, Molony JL: Identification of a role of the vitronectin receptor and protein kinase C in the induction of endothelial cell vascular formation. J Cell Biochem 51: 206–218, 1993

    Google Scholar 

  78. Liu B, Renaud C, Nelson KK, Chen YQ, Bazaz R, Kowynia J, Timar J, Diglio CA, Honn KV: Protein-kinase-C inhibitor calphostin C reduces B16 amelanotic melanoma cell adhesion to endothelium and lung colonization. Int J Cancer 52: 147–152, 1992

    Google Scholar 

  79. Nip J, Shibata H, Loskutoff DJ, Cheresh DA, Brodt P: Human melanoma cells derived from lymphatic metastases use integrin αvβ3 to adhere to lymph node vitronectin. J Clin Invest 90: 1406–1413, 1992

    Google Scholar 

  80. Nip J, Rabbani SA, Shibata H, Brodt P: Coordinated expression of the vitronectin receptor and the urokinase-type plasminogen activator receptor in metastatic melanoma cells. J Clin Invest 95: 2096–2103, 1995

    Google Scholar 

  81. Saksela O, Hovi T, Vaheri A: Urokinase-type plasminogen activator and its inhibitor secreted by cultured human monocyte-macrophages. J Cell Physiol 122: 125–132, 1985

    Google Scholar 

  82. Waltz DA, Chapman HA: Reversible cellular adhesion to vitronectin linked to urokinase receptor occupancy. J Biol Chem 269: 14746–14750, 1994

    Google Scholar 

  83. Miyamoto S, Akiyama SK, Yamada KM: Synergistic roles for receptor occupancy and aggregation in integrin transmembrane function. Science 267: 883–885, 1995

    Google Scholar 

  84. Sanchez-Mateos P, Arroyo AG, Balboa MA, Sanchez-Madrid F: Post-receptor occupancy events in leukocytes during β 1 integrin-ligand interactions. Eur J Immunol 23: 2642–2648, 1993

    Google Scholar 

  85. Pelletier AJ, Bodary SC, Levinson AD: Signal transduction by the platelet integrin αIIb β3: induction of calcium oscillations required for protein-tyrosine phosphorylation and ligand-induced spreading of stably transfected cells. Mol Biol Cell 3: 989–998, 1992

    Google Scholar 

  86. Yurochko AD, Liu DY, Eierman D, Haskill S: Integrins as a primary signal transduction molecule regulating monocyte immediate-early gene induction. Proc Natl Acad Sci USA 899034-8: 9034–8, 1992

    Google Scholar 

  87. Mattei S, Colombo MP, Melani C, Silvani A, Parmiani G, Herlyn M: Expression of cytokine/growth factors and their receptors in human melanoma and melanocytes. Int J Cancer 56: 853–857, 1994

    Google Scholar 

  88. Rodeck U, Bossler A, Graeven U, Fox FE, Nowell PC, Knabbe C, Kari C: Transforming growth factor β production and responsiveness in normal human melanocytes and melanoma cells. Cancer Res 54: 575–581, 1994

    Google Scholar 

  89. Leavesley DI, Schwartz MA, Rosenfeld M, Cheresh DA: Integrin β1- and β3-mediated endothelial cell migration is triggered through distinct signaling mechanisms. J Cell Biol 121: 163–170, 1993

    Google Scholar 

  90. Seftor RE, Seftor EA, Gehlsen KR, Stetler-Stevenson WG, Brown PD, Ruoslahti E, Hendrix MJ: Role of the αvβ3 integrin in human melanoma cell invasion. Proc Natl Acad Sci USA 89: 1557–1561, 1992

    Google Scholar 

  91. Stahl A, Mueller BM: Binding of urokinase to its receptor promotes migration and invasion of human melanoma cellsin vitro. Cancer Res 54: 3066–3071, 1994

    Google Scholar 

  92. Odekon LE, Blasi F, Rifkin DB: Requirement for receptorbound urokinase in plasmin-dependent cellular conversion of latent TGF-β to TGF-β. J Cell Physiol 158: 398–407, 1994

    Google Scholar 

  93. Pepper MS, Sappino A-P, Stöcklin R, Montesano R, Orci L, Vassalli J-D: Upregulation of urokinase receptor expression on migrating endothelial cells. J Cell Biol 122: 673–684, 1993

    Google Scholar 

  94. Kerbel RS: Expression of multi-cytokine resistance and multi-growth factor independence in advanced stage metastatic cancer. Malignant melanoma as a paradigm. Am J Path 141: 519–524, 1992

    Google Scholar 

  95. Brodt P: Adhesion mechanisms in lymphatic metastasis. Cancer Metastasis Rev 10: 23–32, 1991

    Google Scholar 

  96. Kramer RH, Rose SD, McDonald KA: Basement membrane components associated with the extracellular matrix of the lymph nodes. Cell Tissue Res 252: 367–375, 1988

    Google Scholar 

  97. Simonton SC, Basara ML, Barnes DN, Furch LT: Distribution and immunolocalization of serum spreading factor in human tissue. Lab Invest 52: 63, 1985

    Google Scholar 

  98. Reilly JT, Nash JRG: Vitronectin (serum spreading factor): its localisation in normal and fibrotic tissue. J Clin Path 41: 1269–1272, 1988

    Google Scholar 

  99. Meissauer A, Kramer MD, Schirrmacher V, Brunner G: Generation of cell surface-bound plasmin by cell-associated urokinase-type or secreted tissue-type plasminogen activator: a key event in melanoma cell invasivenessin vitro. Exp Cell Res 199: 179–190, 1992

    Google Scholar 

  100. Wayner EA, Orlando RA, Cheresh DA: Integrins αvβ3 and αvβ5 contribute to cell attachment to vitronectin but differentially distribute on the cell surface. J Cell Biol 113: 919–929, 1991

    Google Scholar 

  101. Weitzman JB, Pasqualini R, Takada Y, Hemler ME: The function and distinctive regulation of the integrin VLA-3 in cell adhesion, spreading, and homotypic cell aggregation. J Biol Chem 268: 8651–8657, 1993

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Figures 1-3 in this review were reproduced with permission from the American Society of Clinical Investigation from J. Clin. Invest. 95: 2098-2101, 1995.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nip, J., Brodt, P. The role of the integrin vitronectin receptor, αvβ3 in melanoma metastasis. Cancer Metast Rev 14, 241–252 (1995). https://doi.org/10.1007/BF00690295

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00690295

Key words

Navigation