Skip to main content

Inflammation, Tumor Progression, and Immune Suppression

  • Chapter
  • First Online:
The Tumor Immunoenvironment

Abstract

Solid tumors consist of tumor cells and a heterogeneous mixture of host cells of both hematopoietic and non-hematopoietic origin. Although some of the host cells have anti-tumor activity, many have been co-opted by tumor-secreted factors and are immune suppressive. Two populations of cells of myeloid origin, myeloid-derived suppressor cells (MDSC) and M2-type macrophages, are potent immune suppressive cells that are particularly prevalent in solid tumors. MDSC and M2 macrophages use multiple mechanisms to individually promote immune suppression and amplify their effects through cross-talk. This chapter will summarize the characteristics of these two myeloid cell populations and then focus on the role of tumor-associated inflammation in inducing MDSC and M2 macrophage development and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADAM17:

Disintegrin and metalloproteinase 17

DC:

Dendritic cells

MDSC:

Myeloid-derived suppressor cells

MO-MDSC:

Monocytic MDSC

NK:

Natural killer cells

PGE2:

Prostaglandin E2

PMN-MDSC:

Granulocytic/neutrophilic MDSC

TLR:

Toll-like receptor

References

  • Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC et al (2001) Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 166:678–689

    PubMed  CAS  Google Scholar 

  • Ameille J, Brochard P, Letourneux M, Paris C, Pairon JC (2011) Asbestos-related cancer risk in patients with asbestosis or pleural plaques. Rev Mal Respir 28:e11–e17

    Article  PubMed  CAS  Google Scholar 

  • Andreu P, Johansson M, Affara NI, Pucci F, Tan T, Junankar S et al (2010) FcRgamma activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell 17:121–134

    Article  PubMed  CAS  Google Scholar 

  • Baban B, Chandler PR, Sharma MD, Pihkala J, Koni PA, Munn DH et al (2009) IDO activates regulatory T cells and blocks their conversion into Th17-like T cells. J Immunol 183:2475–2483

    Article  PubMed  CAS  Google Scholar 

  • Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545

    Article  PubMed  CAS  Google Scholar 

  • Balkwill F, Charles KA, Mantovani A (2005) Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7:211–217

    Article  PubMed  CAS  Google Scholar 

  • Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11:889–896

    Article  PubMed  CAS  Google Scholar 

  • Bronte V, Zanovello P (2005) Regulation of immune responses by l-arginine metabolism. Nat Rev Immunol 5:641–654

    Article  PubMed  CAS  Google Scholar 

  • Bronte V, Wang M, Overwijk WW, Surman DR, Pericle F, Rosenberg SA et al (1998) Apoptotic death of CD8 + T lymphocytes after immunization: induction of a suppressive population of Mac-1 +/Gr-1 + cells. J Immunol 161:5313–5320

    PubMed  CAS  Google Scholar 

  • Bronte V, Chappell DB, Apolloni E, Cabrelle A, Wang M, Hwu P et al (1999) Unopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8 + T cell responses by dysregulating antigen-presenting cell maturation. J Immunol 162:5728–5737

    PubMed  CAS  Google Scholar 

  • Bunt SK, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S (2006) Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. J Immunol 176:284–290

    PubMed  CAS  Google Scholar 

  • Bunt SK, Yang L, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S (2007) Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res 67:10019–10026

    Article  PubMed  CAS  Google Scholar 

  • Bunt SK, Clements VK, Hanson EM, Sinha P, Ostrand-Rosenberg S (2009) Inflammation enhances myeloid-derived suppressor cell cross-talk by signaling through Toll-like receptor 4. J Leukoc Biol 85:996–1004

    Article  PubMed  CAS  Google Scholar 

  • Cheng P, Corzo CA, Luetteke N, Yu B, Nagaraj S, Bui MM et al (2008) Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med 205:2235–2249

    Article  PubMed  CAS  Google Scholar 

  • Chornoguz O, Grmai L, Sinha P, Artemenko KA, Zubarev RA, Ostrand-Rosenberg S (2011) Proteomic pathway analysis reveals inflammation increases myeloid-derived suppressor cell resistance to apoptosis. Mol cell proteomics 10:M110 002980

    Google Scholar 

  • Coffelt SB, Lewis CE, Naldini L, Brown JM, Ferrara N, De Palma M (2010) Elusive identities and overlapping phenotypes of proangiogenic myeloid cells in tumors. Am J Pathol 176:1564–1576

    Article  PubMed  Google Scholar 

  • Corzo CA, Cotter MJ, Cheng P, Cheng F, Kusmartsev S, Sotomayor E et al (2009) Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol 182:5693–5701

    Article  PubMed  CAS  Google Scholar 

  • De Santo C, Serafini P, Marigo I, Dolcetti L, Bolla M, Del Soldato P et al (2005) Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. Proc Natl Acad Sci USA 102:4185–4190

    Article  PubMed  CAS  Google Scholar 

  • de Visser KE, Korets LV, Coussens LM (2005) De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 7:411–423

    Article  PubMed  CAS  Google Scholar 

  • DeNardo DG, Barreto JB, Andreu P, Vasquez L, Tawfik D, Kolhatkar N et al (2009) CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16:91–102

    Article  PubMed  CAS  Google Scholar 

  • Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ (2008) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother

    Google Scholar 

  • Dinarello CA (2011a) A clinical perspective of IL-1beta as the gatekeeper of inflammation. Eur J Immunol 41:1203–1217

    Article  PubMed  CAS  Google Scholar 

  • Dinarello CA (2011b) Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 117:3720–3732

    Article  PubMed  CAS  Google Scholar 

  • Dumitru CA, Moses K, Trellakis S, Lang S, Brandau S (2012) Neutrophils and granulocytic myeloid-derived suppressor cells: immunophenotyping, cell biology and clinical relevance in human oncology. Cancer Immunol Immunother 61:1155–1167

    Article  PubMed  CAS  Google Scholar 

  • Elkabets M, Ribeiro VS, Dinarello CA, Ostrand-Rosenberg S, Di Santo JP, Apte RN et al (2010) IL-1beta regulates a novel myeloid-derived suppressor cell subset that impairs NK cell development and function. Eur J Immunol 40:3347–3357

    Article  PubMed  CAS  Google Scholar 

  • Emmerich J, Mumm JB, Chan IH, Laface D, Truong H, McClanahan T et al (2012) IL-10 directly activates and expands tumor-resident CD8 + T cells without de novo infiltration from secondary lymphoid organs. Cancer Res 72:3570–3581

    Article  PubMed  CAS  Google Scholar 

  • Ezernitchi AV, Vaknin I, Cohen-Daniel L, Levy O, Manaster E, Halabi A et al (2006) TCR zeta down-regulation under chronic inflammation is mediated by myeloid suppressor cells differentially distributed between various lymphatic organs. J Immunol 177:4763–4772

    PubMed  CAS  Google Scholar 

  • Fujita M, Kohanbash G, Fellows-Mayle W, Hamilton RL, Komohara Y, Decker SA et al (2011) COX-2 blockade suppresses gliomagenesis by inhibiting myeloid-derived suppressor cells. Cancer Res 71:2664–2674

    Article  PubMed  CAS  Google Scholar 

  • Gabrilovich DI, Velders MP, Sotomayor EM, Kast WM (2001) Mechanism of immune dysfunction in cancer mediated by immature Gr-1 + myeloid cells. J Immunol 166:5398–5406

    PubMed  CAS  Google Scholar 

  • Gabrilovich DI, Bronte V, Chen SH, Colombo MP, Ochoa A, Ostrand-Rosenberg S, et al (2007) The terminology issue for myeloid-derived suppressor cells. Cancer Res 67(1):425 (author reply 6)

    Google Scholar 

  • Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12:253–268

    Article  PubMed  CAS  Google Scholar 

  • Garrity T, Pandit R, Wright MA, Benefield J, Keni S, Young MR (1997) Increased presence of CD34 + cells in the peripheral blood of head and neck cancer patients and their differentiation into dendritic cells. Int J Cancer 73:663–669

    Article  PubMed  CAS  Google Scholar 

  • Hagemann T, Wilson J, Burke F, Kulbe H, Li NF, Pluddemann A et al (2006) Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. J Immunol 176:5023–5032

    PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  • Hanson EM, Clements VK, Sinha P, Ilkovitch D, Ostrand-Rosenberg S (2009) Myeloid-derived suppressor cells down-regulate L-selectin expression on CD4 + and CD8 + T cells. J Immunol 183:937–944

    Article  PubMed  CAS  Google Scholar 

  • Hoechst B, Ormandy LA, Ballmaier M, Lehner F, Kruger C, Manns MP et al (2008) A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology 135:234–243

    Article  PubMed  CAS  Google Scholar 

  • Hu CE, Gan J, Zhang RD, Cheng YR, Huang GJ (2011) Up-regulated myeloid-derived suppressor cell contributes to hepatocellular carcinoma development by impairing dendritic cell function. Scand J Gastroenterol 46:156–164

    Article  PubMed  CAS  Google Scholar 

  • Huang B, Pan PY, Li Q, Sato AI, Levy DE, Bromberg J et al (2006) Gr-1 + CD115 + Immature Myeloid Suppressor Cells Mediate the Development of Tumor-Induced T Regulatory Cells and T-Cell Anergy in Tumor-Bearing Host. Cancer Res 66:1123–1131

    Article  PubMed  CAS  Google Scholar 

  • Iwakura Y, Ishigame H (2006) The IL-23/IL-17 axis in inflammation. J Clin Invest 116:1218–1222

    Article  PubMed  CAS  Google Scholar 

  • Ji Y, Zhang W (2010) Th17 cells: positive or negative role in tumor? Cancer Immunol Immunother 59:979–987

    Article  PubMed  Google Scholar 

  • Josefowicz SZ, Lu LF, Rudensky AY (2012) Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 30:531–564

    Article  PubMed  CAS  Google Scholar 

  • Kusmartsev S, Gabrilovich DI (2003) Inhibition of myeloid cell differentiation in cancer: the role of reactive oxygen species. J Leukoc Biol 74:186–196

    Article  PubMed  CAS  Google Scholar 

  • Kusmartsev S, Nefedova Y, Yoder D, Gabrilovich DI (2004) Antigen-specific inhibition of CD8 + T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol 172:989–999

    PubMed  CAS  Google Scholar 

  • Kusmartsev S, Su Z, Heiser A, Dannull J, Eruslanov E, Kubler H et al (2008) Reversal of myeloid cell-mediated immunosuppression in patients with metastatic renal cell carcinoma. Clin Cancer Res 14:8270–8278

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Pan PY, Gu P, Xu D, Chen SH (2004) Role of immature myeloid Gr-1 + cells in the development of antitumor immunity. Cancer Res 64:1130–1139

    Article  PubMed  CAS  Google Scholar 

  • Lin EY, Li JF, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA et al (2006) Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 66:11238–11246

    Article  PubMed  CAS  Google Scholar 

  • Lu T, Ramakrishnan R, Altiok S, Youn JI, Cheng P, Celis E et al (2011) Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J Clin Invest 121:4015–4029

    Article  PubMed  CAS  Google Scholar 

  • Mantovani A, Sica A (2010) Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 22:231–237

    Article  PubMed  CAS  Google Scholar 

  • Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555

    Article  PubMed  CAS  Google Scholar 

  • Marigo I, Bosio E, Solito S, Mesa C, Fernandez A, Dolcetti L et al (2010) Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity 32:790–802

    Article  PubMed  CAS  Google Scholar 

  • Matsushita H, Vesely MD, Koboldt DC, Rickert CG, Uppaluri R, Magrini VJ et al (2012) Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482:400–404

    Article  PubMed  CAS  Google Scholar 

  • Melani C, Chiodoni C, Forni G, Colombo MP (2003) Myeloid cell expansion elicited by the progression of spontaneous mammary carcinomas in c-erbB-2 transgenic BALB/c mice suppresses immune reactivity. Blood 102:2138–2145

    Article  PubMed  CAS  Google Scholar 

  • Mirza N, Fishman M, Fricke I, Dunn M, Neuger AM, Frost TJ et al (2006) All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res 66:9299–9307

    Article  PubMed  CAS  Google Scholar 

  • Montero AJ, Diaz-Montero CM, Kyriakopoulos CE, Bronte V, Mandruzzato S (2012) Myeloid-derived suppressor cells in cancer patients: a clinical perspective. J Immunother 35:107–115

    Article  PubMed  Google Scholar 

  • Movahedi K, Guilliams M, Van den Bossche J, Van den Bergh R, Gysemans C, Beschin A et al (2008) Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 111:4233–4244

    Article  PubMed  CAS  Google Scholar 

  • Movahedi K, Laoui D, Gysemans C, Baeten M, Stange G, Van den Bossche J et al (2010) Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C (high) monocytes. Cancer Res 70:5728–5739

    Article  PubMed  CAS  Google Scholar 

  • Mumm JB, Emmerich J, Zhang X, Chan I, Wu L, Mauze S et al (2011) IL-10 elicits IFNgamma-dependent tumor immune surveillance. Cancer Cell 20:781–796

    Article  PubMed  CAS  Google Scholar 

  • Murai M, Turovskaya O, Kim G, Madan R, Karp CL, Cheroutre H et al (2009) Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nat Immunol 10:1178–1184

    Article  PubMed  CAS  Google Scholar 

  • Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L et al (2007) Altered recognition of antigen is a mechanism of CD8 + T cell tolerance in cancer. Nat Med 13:828–835

    Article  PubMed  CAS  Google Scholar 

  • Neurath MF, Finotto S (2011) IL-6 signaling in autoimmunity, chronic inflammation and inflammation-associated cancer. Cytokine Growth Factor Rev 22:83–89

    Article  PubMed  CAS  Google Scholar 

  • Novitskiy SV, Ryzhov S, Zaynagetdinov R, Goldstein AE, Huang Y, Tikhomirov OY et al (2008) Adenosine receptors in regulation of dendritic cell differentiation and function. Blood 112:1822–1831

    Article  PubMed  CAS  Google Scholar 

  • Okada S, Strober S (1982a) Spleen cells from adult mice given total lymphoid irradiation (TLI) or from newborn mice have similar regulatory effects in the mixed leukocyte reaction (MLR). II. Generation of antigen-specific suppressor cells in the MLR after the addition of spleen cells from newborn mice. J Immunol 129:1892–1897

    PubMed  CAS  Google Scholar 

  • Okada S, Strober S (1982b) Spleen cells from adult mice given total lymphoid irradiation or from newborn mice have similar regulatory effects in the mixed leukocyte reaction. I. Generation of antigen-specific suppressor cells in the mixed leukocyte reaction after the addition of spleen cells from adult mice given total lymphoid irradiation. J Exp Med 156:522–538

    Article  PubMed  CAS  Google Scholar 

  • Ostrand-Rosenberg S, Sinha P (2009) Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182:4499–4506

    Article  PubMed  CAS  Google Scholar 

  • Ostrand-Rosenberg S, Sinha P, Beury DW, Clements VK (2012) Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Sem Cancer Biol

    Google Scholar 

  • O’Sullivan T, Saddawi-Konefka R, Vermi W, Koebel C, Arthur C, White JM et al (2012) Cancer immunoediting by the innate immune system in the absence of adaptive immunity. J Exp Med 209(10):1869–1882

    Article  PubMed  CAS  Google Scholar 

  • Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51

    Article  PubMed  CAS  Google Scholar 

  • Ralainirina N, Poli A, Michel T, Poos L, Andres E, Hentges F et al (2007) Control of NK cell functions by CD4 + CD25 + regulatory T cells. J Leukoc Biol 81:144–153

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez PC, Ochoa AC (2008) Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. Immunol Rev 222:180–191

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez PC, Hernandez CP, Quiceno D, Dubinett SM, Zabaleta J, Ochoa JB et al (2005) Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J Exp Med 202:931–939

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez PC, Quiceno DG, Ochoa AC (2007) l-arginine availability regulates T-lymphocyte cell-cycle progression. Blood 109:1568–1573

    Article  PubMed  CAS  Google Scholar 

  • Sinha P, Clements VK, Miller S, Ostrand-Rosenberg S (2005a) Tumor immunity: a balancing act between T cell activation, macrophage activation and tumor-induced immune suppression. Cancer Immunol Immunother 54:1137–1142

    Article  PubMed  CAS  Google Scholar 

  • Sinha P, Clements VK, Ostrand-Rosenberg S (2005b) Reduction of myeloid-derived suppressor cells and induction of M1 macrophages facilitate the rejection of established metastatic disease. J Immunol 174:636–645

    PubMed  CAS  Google Scholar 

  • Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S (2007a) Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67:4507–4513

    Article  PubMed  CAS  Google Scholar 

  • Sinha P, Clements VK, Bunt SK, Albelda SM, Ostrand-Rosenberg S (2007b) Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol 179:977–983

    PubMed  CAS  Google Scholar 

  • Sinha P, Okoro C, Foell D, Freeze HH, Ostrand-Rosenberg S, Srikrishna G (2008) Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J Immunol 181:4666–4675

    PubMed  CAS  Google Scholar 

  • Sinha P, Chornoguz O, Clements VK, Artemenko KA, Zubarev RA, Ostrand-Rosenberg S (2011) Myeloid-derived suppressor cells express the death receptor Fas and apoptose in response to T cell-expressed FasL. Blood 117:5381–5390

    Article  PubMed  CAS  Google Scholar 

  • Smith C, Chang MY, Parker KH, Beury DW, DuHadaway JB, Flick HE et al (2012) IDO is a nodal pathogenic driver of lung cancer and metastasis development. Cancer Discov 2:722–735

    Article  PubMed  CAS  Google Scholar 

  • Solito S, Falisi E, Diaz-Montero CM, Doni A, Pinton L, Rosato A et al (2011) A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells. Blood 118:2254–2265

    Article  PubMed  CAS  Google Scholar 

  • Sonda N, Chioda M, Zilio S, Simonato F, Bronte V (2011) Transcription factors in myeloid-derived suppressor cell recruitment and function. Curr Opin Immunol 23:279–285

    Article  PubMed  CAS  Google Scholar 

  • Song X, Krelin Y, Dvorkin T, Bjorkdahl O, Segal S, Dinarello CA et al (2005) CD11b +/Gr-1 + immature myeloid cells mediate suppression of T cells in mice bearing tumors of IL-1beta-secreting cells. J Immunol 175:8200–8208

    PubMed  CAS  Google Scholar 

  • Srivastava MK, Bosch JJ, Thompson JA, Ksander BR, Edelman MJ, Ostrand-Rosenberg S (2008) Lung cancer patients’ CD4(+) T cells are activated in vitro by MHC II cell-based vaccines despite the presence of myeloid-derived suppressor cells. Cancer Immunol Immunother 57:1493–1504

    Article  PubMed  CAS  Google Scholar 

  • Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 70:68–77

    Article  PubMed  CAS  Google Scholar 

  • Steidl C, Lee T, Shah SP, Farinha P, Han G, Nayar T et al (2010) Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. New Engl J Med 362:875–885

    Article  PubMed  CAS  Google Scholar 

  • Strober S (1984) Natural suppressor (NS) cells, neonatal tolerance, and total lymphoid irradiation: exploring obscure relationships. Annu Rev Immunol 2:219–237

    Article  PubMed  CAS  Google Scholar 

  • Talmadge JE, Hood KC, Zobel LC, Shafer LR, Coles M, Toth B (2007) Chemoprevention by cyclooxygenase-2 inhibition reduces immature myeloid suppressor cell expansion. Int Immunopharmacol 7:140–151

    Article  PubMed  CAS  Google Scholar 

  • Terabe M, Berzofsky JA (2008) The role of NKT cells in tumor immunity. Adv Cancer Res 101:277–348

    Article  PubMed  CAS  Google Scholar 

  • Terabe M, Swann J, Ambrosino E, Sinha P, Takaku S, Hayakawa Y et al (2005) A nonclassical non-Valpha14Jalpha18 CD1d-restricted (type II) NKT cell is sufficient for down-regulation of tumor immunosurveillance. J Exp Med 202:1627–1633

    Article  PubMed  CAS  Google Scholar 

  • Tiemessen MM, Jagger AL, Evans HG, van Herwijnen MJ, John S, Taams LS (2007) CD4 + CD25 + Foxp3 + regulatory T cells induce alternative activation of human monocytes/macrophages. Proc Natl Acad Sci U S A 104:19446–19451

    Article  PubMed  CAS  Google Scholar 

  • Torroella-Kouri M, Silvera R, Rodriguez D, Caso R, Shatry A, Opiela S et al (2009) Identification of a subpopulation of macrophages in mammary tumor-bearing mice that are neither M1 nor M2 and are less differentiated. Cancer Res 69:4800–4809

    Article  PubMed  CAS  Google Scholar 

  • Trinchieri G (2012) Cancer and inflammation: an old intuition with rapidly evolving new concepts. Annu Rev Immunol 30:677–706

    Article  PubMed  CAS  Google Scholar 

  • Veltman JD, Lambers ME, van Nimwegen M, Hendriks RW, Hoogsteden HC, Aerts JG et al (2010) COX-2 inhibition improves immunotherapy and is associated with decreased numbers of myeloid-derived suppressor cells in mesothelioma Celecoxib influences MDSC function. BMC Cancer 10(1):464

    Article  PubMed  CAS  Google Scholar 

  • Wiers KM, Lathers DM, Wright MA, Young MR (2000) Vitamin D3 treatment to diminish the levels of immune suppressive CD34 + cells increases the effectiveness of adoptive immunotherapy. J Immunother 23:115–124

    Article  PubMed  CAS  Google Scholar 

  • Wyckoff JB, Wang Y, Lin EY, Li JF, Goswami S, Stanley ER et al (2007) Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res 67:2649–2656

    Article  PubMed  CAS  Google Scholar 

  • Youn JI, Collazo M, Shalova IN, Biswas SK, Gabrilovich DI (2012) Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. J Leukoc Biol 91:167–181

    Article  PubMed  CAS  Google Scholar 

  • Young MR, Ihm J, Lozano Y, Wright MA, Prechel MM (1995) Treating tumor-bearing mice with vitamin D3 diminishes tumor-induced myelopoiesis and associated immunosuppression, and reduces tumor metastasis and recurrence. Cancer Immunol Immunother 41:37–45

    PubMed  CAS  Google Scholar 

  • Young MR, Wright MA, Lozano Y, Matthews JP, Benefield J, Prechel MM (1996) Mechanisms of immune suppression in patients with head and neck cancer: influence on the immune infiltrate of the cancer. Int J Cancer 67:333–338

    Article  PubMed  CAS  Google Scholar 

  • Young MR, Wright MA, Lozano Y, Prechel MM, Benefield J, Leonetti JP et al (1997) Increased recurrence and metastasis in patients whose primary head and neck squamous cell carcinomas secreted granulocyte-macrophage colony-stimulating factor and contained CD34 + natural suppressor cells. Int J Cancer 74:69–74

    Article  PubMed  CAS  Google Scholar 

  • Young MR, Kolesiak K, Wright MA, Gabrilovich DI (1999) Chemoattraction of femoral CD34 + progenitor cells by tumor-derived vascular endothelial cell growth factor. Clin Exp Metas 17:881–888

    Article  CAS  Google Scholar 

  • Young MR, Petruzzelli GJ, Kolesiak K, Achille N, Lathers DM, Gabrilovich DI (2001) Human squamous cell carcinomas of the head and neck chemoattract immune suppressive CD34(+) progenitor cells. Human Immunol 62:332–341

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Original studies were supported by NIH RO1CA115880, RO1CA84232 (SOR), and American Cancer Society IRG-97-153-07 (PS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne Ostrand-Rosenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ostrand-Rosenberg, S., Sinha, P. (2013). Inflammation, Tumor Progression, and Immune Suppression. In: Shurin, M., Umansky, V., Malyguine, A. (eds) The Tumor Immunoenvironment. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6217-6_7

Download citation

Publish with us

Policies and ethics