Skip to main content

Integral Model for Simulating Gas Turbine Combustion Chambers

  • Chapter
  • First Online:
Flow and Combustion in Advanced Gas Turbine Combustors

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 1581))

  • 4638 Accesses

Abstract

Relying on the software platform FASTEST different sub-models of various complexities designed in the framework of the Collaborative Research Centre 568 were combined to form integral models. As review paper, this contribution summarizes the developments of a Large Eddy Simulation (LES) based integral model for reliably simulating gas turbine combustion chambers. The model was analyzed, validated and evaluated in terms of fuel flexibility, flow, mixing and combustion modeling and predictability. The parallel efficiency for large simulations with the integral model could be improved by using a load balancing strategy based on graph theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Project-Related Publications

  1. Janicka, J., Sadiki, A.: Large eddy simulation of turbulent combustion systems. Proc. Combust. Inst. 30, 537–547 (2005)

    Article  Google Scholar 

  2. Wegner, B., Maltsev, A., Schneider, C., Sadiki, A., Dreizler, A., Janicka, J.: Assessment of unsteady RANS in predicting swirl flow instability based on LES and experiments. Int. J. Heat Fluid Flow 25, 528–536 (2004)

    Article  Google Scholar 

  3. Wegner, B.: A large-eddy simulation technique for the prediction of flow, mixing and combustion in gas turbine combustors. PhD thesis, Technische Universitaet Darmstadt, VDI Verlag GmbH, ISBN 978-3-18-354906-1 (2007)

    Google Scholar 

  4. Ketelheun, A., Olbricht, C., Hahn, F., Janicka, F.: NO prediction in turbulent flames using LES/FGM with additional transport equations. Proc. Combust. Inst. 33(2), 2975–2982 (2011)

    Article  Google Scholar 

  5. Olbricht, C., Hahn, F., Sadiki, A., Janicka, J.: Analysis of subgrid scale mixing using a hybrid LES-Monte-Carlo PDF method. Int. J. Heat Fluid Flow 28(6), 1215–1226 (2007)

    Article  Google Scholar 

  6. Pantangi, P., Sadiki, A., Janicka, J., Hage, M., Dreizler, A., van Oijen, J.A., Hassa, C., Heinze, J., Meier, U.: LES of pre-vaporized kerosene combustion at high pressures in a single sector combustor taking advantage of the flamelet generated manifolds method. In: Proceedings of ASME Turbo Expo 2011 (GT2011-45819), Vancouver, Canada, 6–10 June 2011

    Google Scholar 

  7. Chrigui, M., Gounder, J., Sadiki, A., Masri, A.R., Janicka, J.: Partially premixed reacting acetone spray using LES and FGM tabulated chemistry. Combust. Flame 159(8), 2718–2741 (2012)

    Article  Google Scholar 

  8. Janus, B., Dreizler, A., Janicka, J.: Experiments on swirl stabilized non-premixed natural gas flames in a model gas turbine combustor. Proc. Combust. Inst. 31(2), 3091–3098 (2006)

    Article  Google Scholar 

  9. Kornhaas, M., Sternel, D.C., Schäfer, M.: Influence of time step size and convergence criteria on large eddy simulations with implicit time discretization. In: Meyers, J., Geurts, B., Sagaut, P. (eds.) Quality and Reliability of Large-Eddy Simulations. ERCOFTAC Series 12, pp. 119–130. Springer, Berlin (2008)

    Chapter  Google Scholar 

  10. Gauß, F., Schäfer, M., Siegmann, J., Sternel, D.: On the influence of boundary discretization schemes on the accuracy of flow simulation with local refinement. In: Diez, P, Bouillard, Ph. (eds.) IV International Conference on Adaptive Modelling and Simulation, pp. 97–100. ECCOMAS, International Center for Numerical Methods in Engineering, May 2009

    Google Scholar 

  11. Jakirlic, S., Kadavelil, G., Kornhaas, M., Schäfer, M., Sternel, D.C., Tropea, C.: Numerical and physical aspects in LES and hybrid LES/RANS of turbulent flow separation in a 3-D diffuser. Int. J. Heat Fluid Flow 31, 820–832 (2010)

    Article  Google Scholar 

  12. Sternel, D.C., Kornhaas, M., Schäfer, M.: High-performance computing techniques for coupled fluid, structure and acoustics simulations. In: Competence in High Performance Computing 2010: Proceedings of an International Conference on Competence in High Performance Computing, June 2010. Springer, Germany (2011)

    Google Scholar 

  13. Sternel, D.C., Junglas, D., Martin, A., Schäfer, M.: Optimisation of partitioning for parallel flow simulation on block structured grids. Proceedings of the Fourth International Conference on Engineering Computational Technology, Civil-Comp Press (2004)

    Google Scholar 

Other Publications

  1. Patel, N., Kirtas, M., Sankaran, V., Menon, S.: Simulation of spray combustion in a lean-direct injection combustor. Proc. Combust. Inst. 31(2), 2327–2334 (2007)

    Article  Google Scholar 

  2. Boudier, G., Gicquel, L., Poinsot, T., Bissieres, D., Berat, C.: Comparison of LES, RANS and experiments in an aeronautical gas turbine combustion chamber. Proc. Combust. Inst. 31(2), 3075–3982 (2007)

    Article  Google Scholar 

  3. Boudier, G., Staffelbach, G., Gicquel, L., Poinsot, T.: Reliability of large eddy simulation of combustion in complex test cases. In: Proceedings of Workshop “Quality and Reliability of LES”, Leuven, Belgium, 24–26 October 2007

    Google Scholar 

  4. Vervisch, L., Domingo, P., Lodato, G., Veynante, D.: Scalar energy fluctuations in large-eddy simulation of turbulent flames: statistical budgets and mesh quality criterion. Combust. Flame 157(4) (2010)

    Google Scholar 

  5. Wang, H., Stephen, B.P.: Large eddy simulation/probability density function modeling of a turbulent CH4/H2/N2 jet flame. Proc. Combust. Inst. 33(1), 1319–1330 (2011)

    Article  Google Scholar 

  6. Moin, P., Apte, S.V.: Large eddy simulation of realistic gas turbine combustors. AIAA J. 44(4), 698–708 (2006)

    Article  Google Scholar 

  7. Fureby, C., Grinstein, F.F., Li, G., Gutmark, E.J.: An experimental and computational study of a multi-swirl gas turbine combustor. Proc Combust. Inst. 31, 3107–3114 (2007)

    Article  Google Scholar 

  8. Staffelbach, G., Gicquel, L., Poinsot, T.: Highly parallel large eddy simulations of multiburner test cases in industrial gas turbines. In: The Cyprus International Symposium on Complex Effects in LES, Limassol, September 20–24, (2005)

    Google Scholar 

  9. Vermorel, O., Richard, S., Colin, O., Benkenida, A., Angelberger, C., Veynante, D.: Multi-cycle LES simulations of flow and combustion in a PFI SI 4-valve production engine. SAE Technical paper series, 2007-01-0151 (2007)

    Google Scholar 

  10. Jones, W.P., Lyra, S., Navarro-Martinez, S.: Large eddy simulation of a swirl stabilized spray flame. Proc. Combust. Inst. 33(2), 2153–2160 (2011)

    Article  Google Scholar 

  11. James, S., Zhu, J., Anand, M.S.: Large eddy simulations as a design tool for gas turbine combustion systems. AIAA J. 44(4), 674–686 (2006)

    Article  Google Scholar 

  12. Pitsch, H.: Large eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech. 38, 453–482 (2006)

    Article  MathSciNet  Google Scholar 

  13. Warnatz, J., Maas U., Dibble, R.W.: Combustion. Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation. 4th Edition, Springer Berlin, ISBN 978-3540677512 (2006)

    Google Scholar 

  14. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  15. Fiorina, B., Gicquel, O., Vervisch, L., Carpentier, S., Darabiha, N.: Premixed turbulent combustion modeling using tabulated detailed chemistry and PDF. Proc. Combust. Inst. 30, 867–874 (2005)

    Article  Google Scholar 

  16. Vervisch, L., Lodato, D., Domingo, P.: Proceedings of Workshop “Quality and Reliability of LES”, Leuven, Belgium, 24–26 October 2007

    Google Scholar 

  17. van Oijen, J.A., De Goey, L.P.H.: Modelling of premixed laminar flames using flamelet-generated manifolds. Combust. Sci. Technol. 161, 113–137 (2000)

    Article  Google Scholar 

  18. van Oijen, J.A., de Goey, L.P.H.: A numerical study of confined triple flames using a flamelet-generated manifold. Combust. Theory Model. 8(1), 141–163 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic sub-grid scale eddy viscosity model. Phys. Fluids A 3, 1760–1765 (1991)

    Article  MATH  Google Scholar 

  20. Sagaut, P.: Large Eddy Simulation for Incompressible Flows. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  21. Huai, Y., Sadiki, A.: Analysis and optimization of turbulent mixing with large eddy simulation. In: ASME 2nd Joint U.S.-European Fluids Engineering Summer Meeting, FEDSM 2006–98416, Miami (2006)

    Google Scholar 

  22. Maas, U., Pope, S.B.: Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combust. Flame 88, 239–264 (1992)

    Article  Google Scholar 

  23. Vreman, A.W., Albrecht, B.A., van Oijen, J.A., de Goey, L.P.H., Bastiaans, R.J.M.: Premixed and non-premixed generated manifolds in Large-eddy simulation of Sandia flame D and F. Combust. Flame 253, 394–416 (2008)

    Article  Google Scholar 

  24. Kempf, A.: Large-eddy simulation of non-premixed turbulent flames. PhD thesis, Darmstadt University of Technology (2003)

    Google Scholar 

  25. Final Report, Computational Fluid Dynamics for Combustion (CFD4C), CEC Project No: GRD1-1999-10325 (2003)

    Google Scholar 

  26. Final Report, Modeling of Low Emissions Combustors using Large Eddy Simulations, (MOLECULES), EC Project GRD1-2000-25221 (2004)

    Google Scholar 

  27. Waterson, N.P., Deconinck, H.: Development of bounded higher-order convection scheme for general industrial applications. Project Report 1994–33, Von Karman Institute (1994)

    Google Scholar 

  28. Durst, F., Peric, M., Schäfer, M., Schreck, E.: Parallelization of efficient numerical methods for flows in complex geometries. Notes Numer. Fluid Mech. 38, 79–92 (1993)

    Google Scholar 

  29. Karypis, G., Kumar, V.: Metis – unstructured graph partitioning and sparse matrix ordering system. Technical report, University of Minnesota, Department of Computer Science (1995)

    Google Scholar 

  30. Pellegrini, F.: Graph partitioning based methods and tools for scientific computing. Parallel Comput. 23(12), 153–164 (1997)

    Article  MATH  Google Scholar 

  31. Ahusborde, E., Glockner, S.: A 2d block-structured mesh partitioner for accurate flow simulations on nonrectangular geometries. Comput. Fluids 43(1), 2–13 (2011)

    Article  MATH  Google Scholar 

  32. Gourdain, N., Gicquel, L., Montagnac, M., Vermorel, O., Gazaix, M., Staelbach, G., Garcia, M., Boussuge, J.F., Poinsot, T.: High performance parallel computing of flows in complex geometries: I. methods. Comput. Sci. Discov. 2(1), art. no. 015003 (2009)

    Google Scholar 

  33. Ytterström, A.: A tool for partitioning structured multiblock meshes for parallel computational mechanics. Int. J. High Perform. Comput. Appl. 11(4), 336–343 (1997)

    Article  Google Scholar 

  34. Berger, M.J., Bokhari, S.H.: A partitioning strategy for nonuniform problems on multiprocessors computers. IEEE Trans. Comput C-36(5), 570–580 (1987)

    Article  Google Scholar 

  35. Quagliarella, D.: Optimal Domain Decomposition for Parallel Multiblock Flow Field Solvers Using Genetic Algorithms, pp. 215–222. North- Holland, Amsterdam (1995)

    Google Scholar 

  36. Rantakokko, J.: Comparison of partitioning strategies for pde solvers on multiblock grids. In: Kagström, B. et al. (eds.) Applied Parallel Computing Large Scale Scientic and Industrial Problems, vol. 1541 of Lecture Notes in Computer Science, pp. 468–475. Springer, Berlin/Heidelberg (1998)

    Google Scholar 

  37. Rantakokko, J.: Partitioning strategies for structured multiblock grids. Parallel Comput. 26(12), 1661–1680 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Hagen, L., Kahng, A.B.: New spectral methods for ratio cut partitioning and clustering. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 11(9), 1074–1085 (1992)

    Article  Google Scholar 

  39. Kernighan, B.W., Lin, S.: An efficient Heuristic procedure for partitioning graphs. Bell Syst. Technol. J. 49(1), 291–307 (1970)

    MATH  Google Scholar 

  40. Chung, F.R.K.: Spectral graph theory. Number 92 in Regional Conference Series in Mathematics. American Mathematical Society, Providence (1997)

    Google Scholar 

  41. Maltsev, A.: Towards the development and assessment of complete CFD models for the simulation of stationary Gas turbine combustion process. Dissertation, VDI Verlag GmBH, Duesseldorf, Reihe 6, Nr. 515 (2004)

    Google Scholar 

  42. Yun, A.: Development and analysis of advanced explicit algebraic turbulence and scalar flux models for complex engineering configurations, Dissertation, Darmstadt (2005)

    Google Scholar 

  43. Schneider, E., Sadiki, A., Janicka, J.: Modeling and 3D-simulation of the kinetic effects in the post-flame region of turbulent premixed flames based on the G-equation approach. Flow Turbul. Combust. 75, 191–216 (2005)

    Article  MATH  Google Scholar 

  44. Schneider, E., Sadiki, A., Kurenkov, A., Janicka, J., Oberlack, M.: Modelling of Premixed Combustion Using G-Equation in RANS Context. Modelling of Premixed Combustion Using G-Equation in RANS Context. Advances in Turbulence, ETC., 10, Trondheim (2004)

    Google Scholar 

  45. Schneider, E.: Numerische Simulation turbulenter vorgemischter Verbrennungssysteme: Entwicklung und Anwendung eines RANS-basierten Gesamtmodells. Dissertation, Darmstadt (2005)

    Google Scholar 

  46. Schneider, E., Maltsev, A., Sadiki, A., Janicka, J.: Numerical study of the precessing vortex core in a confined partially premixed swirl combustion system. GT2007-27272 ASME Turbo Expo (2007)

    Google Scholar 

  47. Chrigui, M.: Eulerian–Lagrangian approach for modeling and simulations of turbulent reactive multi-phase flows under gas turbine combustor conditions, Dissertation, TU Darmstadt (2005)

    Google Scholar 

  48. Akula, R.K.: Study of the performance of different subgrid scale models and large eddy simulation of premixed combustion. Dissertation. TU Darmstadt (2007)

    Google Scholar 

  49. Sternel, D.C. (ed.): FASTEST Manual.: Institute of numerical methods in mechanical engineering, Department of Mechanical Engineering, Technische Universität Darmstadt, Germany (2005)

    Google Scholar 

  50. Schlesinger, S.: Terminology for model credibility. Simulation 32(3), 103–104 (1979)

    Article  Google Scholar 

  51. Oberkampf, W.L., Trucano, T.G., Hirsch, C.: Verification, Validation, and Predictive Capability in Computational Engineering and Physics, Report SAND2003-3769, February 2003

    Google Scholar 

Download references

Acknowledgment

The authors are grateful to the financial support by the German Research Council (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Schäfer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kneissl, S., Sternel, D.C., Schäfer, M., Pantangi, P., Sadiki, A., Janicka, J. (2013). Integral Model for Simulating Gas Turbine Combustion Chambers. In: Janicka, J., Sadiki, A., Schäfer, M., Heeger, C. (eds) Flow and Combustion in Advanced Gas Turbine Combustors. Fluid Mechanics and Its Applications, vol 1581. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5320-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5320-4_11

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5319-8

  • Online ISBN: 978-94-007-5320-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics