Skip to main content
Log in

“Fuzzy oil drop” model applied to individual small proteins built of 70 amino acids

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The proteins composed of short polypeptides (about 70 amino acid residues) representing the following functional groups (according to PDB notation): growth hormones, serine protease inhibitors, antifreeze proteins, chaperones and proteins of unknown function, were selected for structural and functional analysis. Classification based on the distribution of hydrophobicity in terms of deficiency/excess as the measure of structural and functional specificity is presented. The experimentally observed distribution of hydrophobicity in the protein body is compared to the idealized one expressed by a three-dimensional Gauss function. The differences between these two distributions reveal the specificity of structural/functional characteristics of the protein. The residues of hydrophobicity deficiency versus the idealized distribution are assumed to indicate cavities with the potential to bind ligands, while the residues of hydrophobicity excess are interpreted as potentially participating in protein-protein complexation. The distribution of hydrophobicity irregularity seems to be specific for particular structures and functions of proteins. A comparative analysis of such profiles is carried out to identify the potential biological activity of proteins of unknown function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rosenberg M, Goldblum A (2006) Computational protein design: a novel path to future protein drugs. Curr Pharm Des 12:3973–3997

    Article  CAS  Google Scholar 

  2. Deng Y, Zheng Q, Ketas TJ, Moore JP, Lu M (2007) Protein design of a bacterially expressed HIV-1 gp41 fusion inhibitor. Biochemistry 46:4360–4369

    Article  CAS  Google Scholar 

  3. Antikainen NM, Martin SF (2005) Altering protein specificity:techniques and applications. Bioorg Med Chem 13:2701–2716

    Article  CAS  Google Scholar 

  4. Patrick WM, Firth AE (2005) Strategies and computational tools for improving randomized protein libraries. Biomol Eng 22:105–112

    Article  CAS  Google Scholar 

  5. Chaparro-Riggers JF, Polizzi KM, Bommarius AS (2007) Better library design:data-driven protein engineering. J Biotechnol 2:180–191

    Article  Google Scholar 

  6. Fowler SB, Poon S, Muff R, Chiti F, Dobson CM, Zurdo J (2005) Rational design of aggregation-resistant bioactive peptides: Reengineering human calcitonin. Proc Natl Acad Sci USA 102:10105–10110

    Article  CAS  Google Scholar 

  7. Shao Z, Arnold FH (1996) Engineering new functions and altering existing functions. Curr Opin Struct Biol 6:513–518

    Article  CAS  Google Scholar 

  8. Eijsink VGH, Bjørk A, Gäseidnes S, Sireväg R, Synstad B, van den Burg B, Vriend G (2004) Rational engineering of enzyme stability. J Biotechnol 113:105–120

    Article  CAS  Google Scholar 

  9. Chiarabelli C, Vrijbloed JW, Thomas RM, Luisi PL (2006) Investigation of de novo totally random biosequences. Part I: A general method for in vitro selection of folded domains from a random polypeptide library displayed on phage. Chem Biodivers 3:827–839

    Article  CAS  Google Scholar 

  10. Chiarabelli C, Vrijbloed JW, Lucrezia DD, Thomas RM, Stano P, Polticelli F, Ottone T, Papa E, Luisi PL (2006) Investigation of de novo totally random biosequences. Part II: On the folding frequency in a totally random library of de novo proteins obtained by phage display. Chem Biodivers 3:840–859

    Article  CAS  Google Scholar 

  11. EUChinaGRID project. http://www.euchinagrid.org/

  12. Bonneau R, Strauss CEM, Rohl CA, Chivian D, Bradley P, Malmström L, Robertson T, Baker D (2002) De novo prediction of three-dimensional structures for major protein families. J Mol Biol 322:65–78

    Article  CAS  Google Scholar 

  13. Konieczny L, Brylinski M, Roterman I (2006) Gauss-function-based model of hydrophobicity density in proteins. In Silico Biol 6:15–22

    CAS  Google Scholar 

  14. Brylinski M, Konieczny L, Roterman I (2006) Fuzzy-oil-drop hydrophobic force field-a model to represent late-stage folding (in silico) of lysozyme. J Biomol Struct Dyn 23:519–528

    CAS  Google Scholar 

  15. Brylinski M, Konieczny L, Roterman I (2006) Hydrophobic collapse in (in silico) protein folding. Comput Biol Chem 30:255–267

    Article  CAS  Google Scholar 

  16. Brylinski M, Konieczny L, Roterman I (2006) Hydrophobic collapse in late-stage folding (in silico) of bovine pancreatic trypsin inhibitor. Biochimie 88:1229–1239

    Article  CAS  Google Scholar 

  17. Brylinski M, Konieczny L, Roterman I (2007) Is the protein folding an aim-oriented process? Human haemoglobin as example. Int J Bioinform Res Appl 3:234–260

    Article  CAS  Google Scholar 

  18. Prymula K, Piwowar M, Kochanczyk M, Flis L, Malawski M, Szepieniec T, Evangelista G, Minervini G, Polticelli F, Wisniowski Z, Salapa K, Matczynska E, Roterman I (in press) In silico structural study of random amino acid sequence proteins not present in nature. Chem Biodivers

  19. Brylinski M, Konieczny L, Roterman I (2006) Ligation site in proteins recognized in silico. Bioinformation 1:127–129

    Google Scholar 

  20. Brylinski M, Kochanczyk M, Konieczny L, Roterman I (2006) Sequence-structure-function relation characterized in silico. In Silico Biol 6:589–600

    CAS  Google Scholar 

  21. Brylinski M, Kochanczyk M, Broniatowska E, Roterman I (2007) Localization of ligand binding site in proteins identified in silico. J Mol Model 13:665–675

    Article  CAS  Google Scholar 

  22. Brylinski M, Prymula K, Jurkowski W, Kochańczyk M, Stawowczyk E, Konieczny L, Roterman I (2007) Prediction of functional sites based on the fuzzy oil drop model. PLoS Comput Biol 3:e94

    Article  Google Scholar 

  23. Prymula K, Roterman I (2009) Functional characteristics of small proteins (70 amino acid residues) forming protein-nucleic acid complexes. J Biomol Struct Dyn 26:663–677

    CAS  Google Scholar 

  24. Prymula K, Roterman I (2009) Structural entropy to characterize small proteins (70 aa) and their interactions. Entropy 11:62–84

    Article  CAS  Google Scholar 

  25. Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K, Feng Z, Gilliland GL, Iype L, Jain S, Fagan P, Marvin J, Padilla D, Ravichandran V, Schneider B, Thanki N, Weissig H, Westbrook JD, Zardecki C (2002) The Protein Data Bank. Acta Crystallogr D Biol Crystallogr 58:899–907

    Article  Google Scholar 

  26. Jia Z, DeLuca CI, Chao H, Davies PL (1996) Structural basis for the binding of a globular antifreeze protein to ice. Nature 384:285–288

    Article  CAS  Google Scholar 

  27. Wisniewska M, Bossenmaier B, Georges G, Hesse F, Dangl M, Künkele KP, Ioannidis I, Huber R, Engh RA (2005) The 1.1 A resolution crystal structure of the p130cas SH3 domain and ramifications for ligand selectivity. J Mol Biol 347:1005–1014

    Article  CAS  Google Scholar 

  28. Mokranjac D, Bourenkov G, Hell K, Neupert W, Groll M (2006) Structure and function of Tim14 and Tim16, the J and J-like components of the mitochondrial protein import motor. EMBO J 25:4675–4685

    Article  CAS  Google Scholar 

  29. Werner MH, Wemmer DE (1992) Three-dimensional structure of soybean trypsin/chymotrypsin Bowman-Birk inhibitor in solution. Biochemistry 31:999–1010

    Article  CAS  Google Scholar 

  30. Cierpicki T, Otlewski J (2000) Determination of a high precision structure of a novel protein, Linum usitatissimum trypsin inhibitor (LUTI), using computer-aided assignment of NOESY cross-peaks. J Mol Biol 302:1179–1192

    Article  CAS  Google Scholar 

  31. Hyberts SG, Goldberg MS, Havel TF, Wagner G (1992) The solution structure of eglin c based on measurements of many NOEs and coupling constants and its comparison with X-ray structures. Protein Sci 1:736–751

    Article  CAS  Google Scholar 

  32. Christendat D et al (2000) Structural proteomics of an archaeon. Nat Struct Biol 7:903–909

    Article  CAS  Google Scholar 

  33. Kohda D, Hatanaka H, Odaka M, Mandiyan V, Ullrich A, Schlessinger J, Inagaki F (1993) Solution structure of the sh3 domain of phospholipase c-gamma. Cell 72:953–960

    Article  CAS  Google Scholar 

  34. Sönnichsen FD, DeLuca CI, Davies PL, Sykes BD (1996) Refined solution structure of type III antifreeze protein:hydrophobic groups may be involved in the energetics of the protein-ice interaction. Structure 4:1325–1337

    Article  Google Scholar 

  35. Schaffer ML, Deshayes K, Nakamura G, Sidhu S, Skelton NJ (2003) Complex with a phage display-derived peptide provides insight into the function of insulin-like growth factor I. Biochemistry 42:9324–9334

    Article  CAS  Google Scholar 

  36. Yee A et al (2002) An NMR approach to structural proteomics. Proc Natl Acad Sci USA 99:1825–1830

    Article  CAS  Google Scholar 

  37. Pineda-Lucena A, Liao J, Wu B, Yee A, Cort JR, Kennedy MA, Edwards AM, Arrowsmith CH (2002) NMR structure of the hypothetical protein encoded by the YjbJ gene from Escherichia coli. Proteins 47:572–574

    Article  CAS  Google Scholar 

  38. Abajian C, Yatsunyk LA, Ramirez BE, Rosenzweig AC (2004) Yeast cox17 solution structure and copper(I) binding. J Biol Chem 279:53584–53592

    Article  CAS  Google Scholar 

  39. Arnesano F, Balatri E, Banci L, Bertini I, Winge DR (2005) Folding studies of cox17 reveal an important interplay of cysteine oxidation and copper binding. Structure 13:713–722

    Article  CAS  Google Scholar 

  40. Cooke RM, Harvey TS, Campbell ID (1991) Solution structure of human insulin-like growth factor 1: a nuclear magnetic resonance and restrained molecular dynamics study. Biochemistry 30:5484–5491

    Article  CAS  Google Scholar 

  41. Dalgarno DC, Botfield MC, Rickles RJ (1997) SH3 domains and drug design:ligands, structure, biological function. Biopolymers 43:383–400

    Article  CAS  Google Scholar 

  42. Huang X, Miller W (1991) A time-efficient, linear-space local similarity algorithm. Adv Appl Math 12:337–357

    Article  Google Scholar 

  43. Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444–2448

    Article  CAS  Google Scholar 

  44. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X, version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  Google Scholar 

  45. Holm L, Park J (2000) DaliLite workbench for protein structure comparison. Bioinformatics 16:566–567

    Article  CAS  Google Scholar 

  46. Levitt M (1976) A simplified representation of protein conformations for rapid simulation of protein folding. J Mol Biol 104:59–107

    Article  CAS  Google Scholar 

  47. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  CAS  Google Scholar 

  48. Eisenberg D, Weiss RM, Terwilliger TC, Wilcox W (1982) Hydrophobic moments and protein structure. Faraday Symp Chem Soc 17:109–120

    Article  Google Scholar 

  49. Engelman DM, Zaccai G (1986) Bacteriorhodopsin is an inside-out protein. Proc Natl Acad Sci USA 77:5894–5898

    Article  Google Scholar 

  50. Hopp TP, Woods KR (1981) Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci USA 78:3824–3828

    Article  CAS  Google Scholar 

  51. Rose GD, Geselowitz AR, Lesser GJ, Lee RH, Zehfus MH (1985) Hydrophobicity of amino acid residues in globular proteins. Science 229:834–838

    Article  CAS  Google Scholar 

  52. Wimley WC, White SH (1996) Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat Struct Biol 3:842–848

    Article  CAS  Google Scholar 

  53. Wolfender R, Anderson L, Cullis PM, Soulhgate CC (1981) Affinities of amino acids side chains for solvent water. Biochemistry 20:846–855

    Google Scholar 

  54. http://www.statsoft.com/?kw=spss&gclid=ck3ik-namzscfcitzaodhfy-ig

  55. Spearman C (1906) General intelligence, objectively determined and measured. Am J Psychol 6:201–293

    Google Scholar 

  56. Vajdos FF, Ultsch M, Schaffer ML, Deshayes KD, Liu J, Skelton NJ, de Vos AM (2001) Crystal structure of human insulin-like growth factor-1:detergent binding inhibits binding protein interactions. Biochemistry 40:11022–11029

    Article  CAS  Google Scholar 

  57. Koepke J, Ermler U, Warkentin E, Wenzl G, Flecker P (2000) Crystal structure of cancer chemopreventive bowman-birk inhibitor in ternary complex with bovine trypsin at 2.3 a resolution. Structural basis of janus-faced serine protease inhibitor specificity. J Mol Biol 298:477–491

    Article  CAS  Google Scholar 

  58. Raymond JA, DeVries AL (1972) Freezing behavior of fish blood glycoproteins with antifreeze properties. Cryobiology 9:541–547

    Article  CAS  Google Scholar 

  59. Raymond JA, DeVries AL (1977) Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci USA 74:2589–2593

    Article  CAS  Google Scholar 

  60. Li Q, Luo L (1993) The kinetic theory of thermal hysteresis of a macromolecule solution. Chem Phys Lett 216:453–457

    Article  CAS  Google Scholar 

  61. Li Q, Luo L (1994) Further discussion on the thermal hysteresis of the ice growth inhibitor. Chem Phys Lett 223:181–184

    Article  CAS  Google Scholar 

  62. Hall DG, Lips A (1999) Phenomenology and mechanism of antifreeze peptide activity. Langmuir 15:1905–1912

    Article  CAS  Google Scholar 

  63. Kristiansen E, Zachariassen KE (2005) The mechanism by which fish antifreeze proteins cause thermal hysteresis. Cryobiology 51:262–28

    Article  CAS  Google Scholar 

  64. Chao H, Sönnichsen FD, DeLuca CI, Sykes BD, Davies PL (1994) Structure-function relationship in the globular type iii antifreeze protein: identification of a cluster of surface residues required for binding to ice. Protein Sci 3:1760–1769

    Article  CAS  Google Scholar 

  65. Kauzmann W (1959) Some factors in the interpretation of protein denaturation. Adv Protein Chem 14:1–63

    Article  CAS  Google Scholar 

  66. Minervini G, Evangelista G, Polticelli F, Piwowar M, Kochanczyk M, Flis L, Malawski M, Szepieniec T, Wiśniowski Z, Matczyńska E, Prymula K, Roterman I (2008) Never born proteins as a test case for ab initio protein structures prediction. Bioinformation 3:177–179

    Google Scholar 

Download references

Acknowledgments

The Authors are very grateful to Prof. Leszek Konieczny (Institute of Medical Biochemistry - Collegium Medicum - Jagiellonian University - Krakow - Poland) for our fruitful discussion. This research was supported by Collegium Medicum grants 501/P/266/L. This study has also been financially supported by the European Commission in the frame of the EUChinaGRID project (contract number: 026634).

Availability

The tools applied for the calculations presented in this paper are available at http://www.bioinformatics.cm-uj.krakow.pl/activesite.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irena Roterman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prymula, K., Sałapa, K. & Roterman, I. “Fuzzy oil drop” model applied to individual small proteins built of 70 amino acids. J Mol Model 16, 1269–1282 (2010). https://doi.org/10.1007/s00894-009-0639-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0639-2

Keywords

Navigation