Skip to main content

Origin of the Genetic Code and Abiotic Synthesis of Organic Compounds

  • Chapter
  • First Online:
Life on Earth and other Planetary Bodies

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 24))

Abstract

The genetic code is intrinsic to all living organisms. However, it is still not known what the first replication system was. The origin of the genetic code remains uncertain, and several hypotheses have been proposed. Theories include the synthesis of peptides preceding the appearance of genes (“Metabolic Model”) or molecules of nucleic acids being responsible for the storage of genetic information (“Genetic Model”). In this chapter, the main theories for the first replication systems are outlined. Possible pathways for the prebiotic synthesis of the first monomers are reviewed. The contributions of endogenous and exogenous sources are presented, summarizing how the genetic code may have appeared on Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amend JP, Shock EL (1998) Energetics of amino acid synthesis in hydrothermal ecosystems. Science 281:1659

    ADS  Google Scholar 

  • Bean HD, Anet FAL, Gould IR, Hud NV (2006) Glyoxylate as a backbone linkage for a prebiotic ancestor of RNA. Orig Life Evol Biosph 36:39–63

    ADS  Google Scholar 

  • Belozerskii AN (1959) On the species specificity of the nucleic acids of bacteria. In: Oparin AI, Pasynskii AG, Braunshtei AE, Pavlovskaya TE (eds) Academy of Sciences of the U.S.S.R., Moscow, English-French-German edition by Clark F, Synge RLM (eds) The origin of life on Earth. MacMillan, New York, pp 322–331 (in Russian)

    Google Scholar 

  • Blagojevic V, Petrie S, Bohme DK (2003) Gas-phase syntheses for interstellar carboxylic and amino acids. Mon Not R Astron Soc 339:L7–L11

    ADS  Google Scholar 

  • Botta O, Glavin DP, Kminek G, Bada JL (2002) Relative amino acid concentrations as a signature for parent body processes of carbonaceous chondrites. Orig Life Evol Biosph 32:143–163

    ADS  Google Scholar 

  • Brachet J (1959) Les acides nucléiques et l’origine des proteins. In: Oparin AI, Pasynskii AG, Braunshtei AE, Pavlovskaya TE (eds) Academy of Sciences of the U.S.S.R., Moscow, English-French-German edition by Clark F, and Synge RLM (eds) The origin of life on Earth. MacMillan, New York, pp 361–367 (in Russian)

    Google Scholar 

  • Brinton KLF, Engrand C, Glavin DP, Bada JL, Maurette M (1998) A search for extraterrestrial amino acids in carbonaceous Antarctic micrometeorites. Orig Life Evol Biosph 28:413–424

    ADS  Google Scholar 

  • Buchanan JM (1965) Chairman’s remarks. In: Fox SW (ed) The origin of prebiological systems and of their molecular matrices. Academic, New York, pp 101–104

    Google Scholar 

  • Bullard T, Freudenthal J, Avagyan S, Kahr B (2007) Test of Cairns-Smith’s crystals-as-genes hypothesis. Faraday Disc 136:231–245

    ADS  Google Scholar 

  • Butlerow A (1861) Formation synthetique d’une substance sucree. C R Acad Sci 53:145–147

    Google Scholar 

  • Cairns-Smith AG (1982) Genetic takeover and the mineral origins of life. Cambridge University Press, New York

    Google Scholar 

  • Cairns-Smith AG (1985) Seven clues to the origin of life. Cambridge University Press, Cambridge

    Google Scholar 

  • Callahan MP, Smith KE, Cleaves HJ, Ruzicka J, Stern JC, Glavin DP, House CH, Dworkin JP (2011) Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proc Natl Acad Sci USA 108:13995–13998

    ADS  Google Scholar 

  • Cech TR (1986) A model for the RNA-catalyzed replication of RNA. Proc Natl Acad Sci USA 83:4360–4363

    ADS  Google Scholar 

  • Charnley SB (1997) On the nature of interstellar organic chemistry. In: Cosmovici CB, Bowyer S, Werthimer D (eds) Astronomical and biochemical origins and the search for life in the universe. Editrice Compositori, Bologna. IAU Colloq 161:89

    Google Scholar 

  • Charnley SB, Ehrenfreund P, Kuan Y.-J (2001) Spectroscopic diagnostics of organic chemistry in the protostellar environment. Spectrochim Acta A: Mol Biomol Spectrosc 57:685–704

    ADS  Google Scholar 

  • Cherny DY, Belotserkovskii BP, Frank-Kamenetskii MD, Egholm M, Buchardt O, Berg RH, Nielsen PE (1993) DNA unwinding upon strand-displacement binding of a thymine-substituted polyamide to double-stranded DNA. Proc Natl Acad Sci USA 90:1667–1670

    ADS  Google Scholar 

  • Chyba C, Sagan C (1992) Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature 355:125–132

    ADS  Google Scholar 

  • Cohn CA, Hannson TK, Larrson HS, Sowerby SJ, Holm NG (2001) Fate of prebiotic adenine. Astrobiology 1:477–480

    ADS  Google Scholar 

  • Cooper GW, Cronin JR (1995) Linear and cyclic aliphatic carboxamides of the Murchison meteorite: hydrolyzable derivatives of amino acids and other carboxylic acids. Geochim Cosmochim Acta 59:1003–1015

    ADS  Google Scholar 

  • Cooper GW, Onwo WM, Cronin JR (1992) Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite. Geochim Cosmochim Acta 56:4109–4115

    ADS  Google Scholar 

  • Crick FHC (1968) The origin of the genetic code. J Mol Biol 38:367–379

    Google Scholar 

  • Cronin JR, Chang S (1993) Organic matter in meteorites: molecular and isotopic analyses of the Murchison meteorites. In: Greenberg JM, Mendoza-Gomez CX, Pirronello V (eds) The chemistry of life’s origin. Kluwer, Dordrecht, pp 209–258

    Google Scholar 

  • Cronin JR, Pizzarello S, Cruikshank DP (1988) Organic matter in carbonaceous chondrites, planetary satellites, asteroids and comets. In: Kerridhe JF, Matthews MS (eds) Meteorites and the early solar system. University of Arizona Press, Tucson, pp 819–857

    Google Scholar 

  • Crovisier J, Bockelée-Morvan D, Colom P, Biver N, Despois D, Lis DC, The Team for target-of-opportunity radio observations of comets (2004) The composition of ices in comet C/1995 O1 (Hale-Bopp) from radio spectroscopy. Further results and upper limits on undetected species. Astron Astrophys 418:1141–1157

    ADS  Google Scholar 

  • De Duve C (1991) Blueprint for a cell: the nature and origin of life. N. Patterson, Burlington, pp 135–141

    Google Scholar 

  • De Graaf RM, Visscher J, Schwartz AW (1997) Reactive phosphonic acids as prebiotic carriers of phosphorus. J Mol Evol 44:237–241

    Google Scholar 

  • Dose K (1994) On the origin of biological information. J Biol Phys 20:181–192

    Google Scholar 

  • Egholm M, Buchardt O, Nielsen EE, Berg RH (1992a) Peptide nucleic acids (PNA). Oligonucleotide analogs with an achiral peptide backbone. J Am Chem Soc 114:1895–1897

    Google Scholar 

  • Egholm M, Buchardt O, Nielsen EE, Berg RH (1992b) Recognition of guanine and adenine in DNA by cytosine and thymine containing peptide nucleic acids (PNA). J Am Chem Soc 114:9677–9678

    Google Scholar 

  • Egholm M, Behrens C, Christensen L, Berg RH, Nielsen EE, Buchardt O (1993) Peptide nucleic acids containing adenine or guanine recognize thymine and cytosine in complementary DNA sequences. J Chem Soc Chem Commun 9:800–801

    Google Scholar 

  • Ehrenfreund P, Bernstein MP, Dworkin JP, Sandford SA, Allamandola LJ (2001) The photostability of amino acids in space. Astrophys J 550:L95–L99

    ADS  Google Scholar 

  • Ehrenfreund P, Irvine W, Becker L, Blank J, Brucato JR, Colangeli L, Derenne S, Despois D, Dutrey A, Fraaije H, Lazcano A, Owen T, Robert F (2002) Astrophysical and astrochemical insights into the origin of life. Rep Prog Phys 65:1427–1487

    ADS  Google Scholar 

  • Ehrenfreund P, Charnley SB, Botta O (2005) Voyage from dark clouds to the early Earth. In: Livio M, Reid N, Sparks WB (eds) Astrophysics of life. Telescope Science Institute Symposium Series 2005, 16. Cambridge University Press, Cambridge, pp 1–20

    Google Scholar 

  • Eigen M, Schuster P (1979) The hypercycle: a principle of natural self-organization. Springer, Berlin, p 62

    Google Scholar 

  • Eschenmoser A (1997) Towards a chemical etiology of nucleic acid structure. Orig Life Evol Biosph 27:535–553

    ADS  Google Scholar 

  • Eschenmoser A (1999) Chemical etiology of nucleic acid structure. Science 284:2118–2124

    Google Scholar 

  • Ferris JP (1987) Prebiotic synthesis: problems and challenges. Cold Spr Harbor Symp Quant Biol 52:29–35

    Google Scholar 

  • Ferris JP (1992) Chemical markers of prebiotic chemistry in hydrothermal systems. Orig Life Evol Biosph 22:109

    ADS  Google Scholar 

  • Ferris JP (1993) Catalysis and prebiotic RNA synthesis. Orig Life Evol Biosph 23:307–315

    ADS  Google Scholar 

  • Ferris JP (2005) Mineral catalysis and prebiotic synthesis: montmorillonite-catalyzed formation of RNA. Elements 1:145–149

    Google Scholar 

  • Ferris JP, Ertem G (1993) Montmorillonite catalysis of RNA oligomer formation in aqueous solution. A model for the prebiotic formation of RNA. J Am Chem Soc 115:12270–12275

    Google Scholar 

  • Ferris JP, Hagan JWJ (1984) HCN and chemical evolution: the possible role of cyano compounds in prebiotic synthesis. Tetrahedron 40:1093–1120

    Google Scholar 

  • Ferris JP, Orgel LE (1965) Aminomalononitrile and 4–amino-5–cyanoimidazole in hydrogen cyanide polymerization and adenine synthesis. J Am Chem Soc 87:4976–4977

    Google Scholar 

  • Ferris JP, Orgel LE (1966) An unusual photochemical rearrangement in the synthesis of adenine from hydrogen cyanide. J Am Chem Soc 88:1074

    Google Scholar 

  • Ferris JP, Sanchez RA, Orgel LE (1968) Studies in prebiotic synthesis: III. Synthesis of pyrimidines from cyanoacetylene and cyanate. J Mol Biol 33:693–704

    Google Scholar 

  • Ferris JP, Joshi PC, Edelson EH, Lawless JG (1978) HCN: a plausible source of purines, pyrimidines and amino acids on the primitive earth. J Mol Evol 11:293–311

    Google Scholar 

  • Fox SW, Dose K (1977) Molecular evolution and the origin of life. M Dekker, New York

    Google Scholar 

  • Fuller WD, Sanchez RA, Orgel LE (1972a) Studies in prebiotic synthesis. VI. Synthesis of purine nucleosides. J Mol Biol 67:25–33

    Google Scholar 

  • Fuller WD, Sanchez RA, Orgel LE (1972b) Studies in prebiotic synthesis. VII. Solid-state synthesis of purine nucleosides. J Mol Evol 1:249–257

    Google Scholar 

  • Gilbert W (1986) Origin of life: the RNA world. Nature 319:618

    ADS  Google Scholar 

  • Glavin DP, Matrajt G, Bada JL (2004) Re-examination of amino acids in Antarctic micrometeorites. Adv Space Res 33:106–113

    ADS  Google Scholar 

  • Haldane JBS (1929) The origin of life. Ration Ann 148:3–10

    Google Scholar 

  • Haldane JBS (1954) The origin of life. New Biol 16:12–27

    Google Scholar 

  • Haldane JBS (1965) Data needed for a blueprint of the first organism. In: Fox SW (ed) The origins of prebiological systems and of their molecular matrices. Academic, New York, pp 11–18

    Google Scholar 

  • Holland HD (1984) The chemical evolution of the atmosphere and oceans. Princeton University Press, Princeton, 583

    Google Scholar 

  • Huber C, Wächtershäuser G (1998) Peptides by activation of amino acids with CO on (Ni, Fe)S surfaces: implications for the origin of life. Science 281:670–672

    ADS  Google Scholar 

  • Huber C, Wächtershäuser G (2003) Primordial reductive amination revisited. Tetra Lett 44:1695–1697

    Google Scholar 

  • Huber C, Wächtershäuser G (2006) α-Hydroxy and α-amino acids under possible Hadean, volcanic origin-of-life conditions. Science 314:630–632

    ADS  Google Scholar 

  • Huber C, Eisenreich W, Hecht S, Wächtershäuser G (2003) A possible primordial peptide cycle. Science 301:938–940

    ADS  Google Scholar 

  • Johnson AP, Cleaves HJ, Dworkin JP, Glavin DP, Lazcano A, Bada JL (2008) The Miller volcanic spark discharge experiment. Science 322:404

    ADS  Google Scholar 

  • Johnston WK, Unrau PJ, Lawrence MS, Glasner ME, Bartel DP (2001) RNA-catalyzed RNA polymerization: accurate and general RNA-templated primer extension. Science 292:1319–1325

    ADS  Google Scholar 

  • Joyce GF (1991) The rise and fall of the RNA world. New Biol 3:399–407

    Google Scholar 

  • Joyce GF (2000) RNA structure: ribozyme evolution at the crossroads. Science 289:401–402

    Google Scholar 

  • Joyce GF (2002) The antiquity of RNA-based evolution. Nature 418:214–221

    ADS  Google Scholar 

  • Joyce GF, Visser GM, van Boeckel CAA, van Boom JH, Orgel LE, van Westrenen J (1984) Chiral selection in poly(C)-directed synthesis of oligo(G). Nature 310:602–604

    ADS  Google Scholar 

  • Joyce GF, Schwartz AW, Miller SL, Orgel LE (1987) The case for an ancestral genetic system involving simple analogues of the nucleotides. Proc Natl Acad Sci USA 84:4398–4402

    ADS  Google Scholar 

  • Kasting JF (1993) Earth’s early atmosphere. Science 259:920–926

    ADS  Google Scholar 

  • Kasting JF, Catling D (2003) Evolution of a habitable planet. Annu Rev Astron Astrophys 41:429–463

    ADS  Google Scholar 

  • Kauffman SA (1986) Autocatalytic sets of proteins. J Theor Biol 119:1–24

    Google Scholar 

  • Kawamura K, Ferris JP (1994) Kinetic and mechanistic analysis of dinucleotide and oligonucleotide formation from the 5′-phosphorimidazolide of adenosine on Na+ −  montmorillonite. J Am Chem Soc 116:7564–7572

    Google Scholar 

  • Keefe AD, Miller SL (1995) Are polyphosphates or phosphate esters prebiotic reagents? J Mol Evol 41:693–702

    Google Scholar 

  • Kissel J, Krueger FR (1987) The organic component in dust from comet Halley as measured by the PUMA mass spectrometer on Board VEGA 1. Nature 326:755–760

    ADS  Google Scholar 

  • Kminek G, Botta O, Glavin DP, Bada JL (2002) Amino acids in the Tagish Lake meteorite. Meteor Planet Sci 37:697–701

    ADS  Google Scholar 

  • Krishnamurthy R, Pitsch S, Arrhenius G (1999) Mineral induced formation of pentose-2,4-bisphosphates. Orig Life Evol Biosph 29:139–152

    ADS  Google Scholar 

  • Kuan Y-J, Yan C-H, Charnley SB, Kisiel Z, Ehrenfreund P, Huang H-C (2003) A search for interstellar pyrimidine. Month Nat Roy Astron Soc 345:650–656

    ADS  Google Scholar 

  • Kuhn H (1972) Self-organization of molecular systems and evolution of the genetic apparatus. Agew Chem Int Ed Engl 11:798–820

    Google Scholar 

  • Larralde R, Robertson MP, Miller SL (1995) Rates of decomposition of ribose and other sugars: Implications for chemical evolution. Proc Natl Acad Sci USA 92:8158–8160

    ADS  Google Scholar 

  • Lazcano A (1986) Prebiotic evolution and the origin of cells. In: Margulis L, Guerrero R, Lazcano A (eds) Origin of life and evolution of cells.Treballs de la Societat Catalana de Biologia 39:73103

    Google Scholar 

  • Leman L, Orgel L, Reza Ghadiri M (2004) Carbonyl sulfide-mediated prebiotic formation of peptides. Science 306:283

    ADS  Google Scholar 

  • Levy M, Miller SL (1998) The stability of the RNA bases: implication for the origin of life. Proc Natl Acad Sci USA 95:7933–7938

    ADS  Google Scholar 

  • Levy M, Miller SL, Oró J (1999) Production of guanine from NH4CN polymerizations. J Mol Evol 49:165–168

    Google Scholar 

  • Liu SY, Mehringer DM, Snyder LE (2001) Observations of formic acid in hot molecular cores. Astrophys J 552L:654–663

    ADS  Google Scholar 

  • Martins Z, Sephton MA (2009) Extraterrestrial amino acids. In: Hughes AB (ed) Amino acids, peptides and proteins in organic chemistry. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim, pp 1–42

    Google Scholar 

  • Martins Z, Alexander CMO’D, Orzechowska GE, Fogel ML, Ehrenfreund P (2007) Indigenous amino acids in primitive CR meteorites. Meteor Planet Sci 42:2125–2136

    ADS  Google Scholar 

  • Martins Z, Botta O, Fogel ML, Sephton MA, Glavin DP, Watson JS, Dworkin JP, Schwartz AW, Ehrenfreund P (2008) Extraterrestrial nucleobases in the Murchison meteorite. Earth Planet Sci Lett 270:130–136

    ADS  Google Scholar 

  • Matrajt G, Pizzarello S, Taylor S, Brownlee D (2004) Concentration and variability of the AIB amino acid in polar micrometeorites: implications for the exogenous delivery of amino acids to the primitive Earth. Meteor Planet Sci 39:1849–1858

    ADS  Google Scholar 

  • Menor-Salván C, Ruiz-Bermejo M, Osuna-Esteban S, Muñoz-Caro G, Veintemillas-Verdaguer S (2009) Synthesis of polycyclic aromatic hydrocarbons and acetylene polymers in ice: a Prebiotic Scenario. Chem Biodivers 5(12):2729–2739

    Google Scholar 

  • Miller SL (1953) A production of amino acids under possible primitive Earth conditions. Science 117:528–529

    ADS  Google Scholar 

  • Miller SL, Chyba C (1992) Origins of life/Primordial soup. Sky Telesc 83:604

    ADS  Google Scholar 

  • Miller SL, Schlesinger G (1983) The atmosphere of the primitive earth and the prebiotic synthesis of organic compounds. Adv Space Res 3:47–53

    ADS  Google Scholar 

  • Miller SL, Urey HC (1959) Organic compound synthesis on the primitive. Earth Sci 130:245–251

    Google Scholar 

  • Minard RD, Hatcher PG, Gourley RC, Matthews CN (1998) Structural investigations of hydrogen cyanide polymers: new insights using TMAH thermochemolysis/GC-MS. Orig Life Evol Biosph 28:461–473

    ADS  Google Scholar 

  • Miyakawa S, Murasawa K-I, Kobayashi K, Sawaoka AB (2000) Abiotic synthesis of guanine with high-temperature plasma. Orig Life Evol Biosph 30:557–566

    ADS  Google Scholar 

  • Miyakawa S, Cleaves HJ, Miller SL (2002) The cold origin of life: B. Implications based on pyrimidines and purines produced from frozen ammonium cyanide solutions. Orig Life Evol Biosph 32:209–218

    ADS  Google Scholar 

  • Mojzsis SJ, Arrhenius G, McKeegan KD, Harrison TM, Nutman AP, Friend CRL (1996) Evidence for life on Earth before 3,800 million years ago. Nature 384:55–59

    ADS  Google Scholar 

  • Müller D, Pitsch S, Kittaka A, Wagner E, Wintner CE, Eschenmoser A, Ohlofjgewidmet G (1990) Chemie von a-aminonitrilen. Aldomerisierung von glycolaldehyd-phosphat zu racemischen hexose-2,4,6-triphosphaten und (in gegenwart von formaldehyd) racemischen pentose-2,4-diphosphaten: rac-Allose-2,4,6-triphosphat und rac-ribose-2,4-diphosphat sind die reaktionshauptprodukte. Helv Chim Acta 73:1410–1468

    Google Scholar 

  • Nelson KE, Levy M, Miller SL (2000) Peptide nucleic acids rather than RNA may have been the first genetic molecule. Proc Natl Acad Sci USA 97:3868–3871

    ADS  Google Scholar 

  • Nelson KE, Robertson MP, Levy M, Miller SL (2001) Concentration by evaporation and the prebiotic synthesis of cytosine. Orig Life Evol Biosph 31:221–229

    ADS  Google Scholar 

  • Nielsen EE (1993) Peptide nucleic acid (PNA): a model structure for the primordial genetic material? Orig Life Evol Biosph 23:323–327

    ADS  Google Scholar 

  • Nielsen PE (1999) Peptide nucleic acid. A molecule with two identities. Acc Chem Res 32:624–630

    Google Scholar 

  • Nielsen EE, Egholm M, Berg RH, Buchardt O (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254:1497–1500

    ADS  Google Scholar 

  • Nuevo M, Milam SN, Sandford SA, Elsila JE, Dworkin JP (2009) Formation of uracil from the ultraviolet photo-irradiation of pyrimidine in pure H2O ices. Astrobiology 9:683–695

    ADS  Google Scholar 

  • Oparin AI (1924) Proiskhodenie Zhizni. Moscoksky Rabotichii, Moscow (Translated by Bernal, AS (1967)) In: Carrington R (ed) The origin of life. Weidenfeld and Nicolson, London, pp 199–234

    Google Scholar 

  • Oparin AI (1952) The origin of life. Dover, New York

    Google Scholar 

  • Oparin AI (1961) Life: its nature, origin, and development. Oliver and Boyd Publishers, Edinburg, UK

    Google Scholar 

  • Orgel LE (1968) Evolution of the genetic apparatus. J Mol Biol 38:381–393

    Google Scholar 

  • Orgel LE (1994) The origin of life on earth. Sci Am 271:77–83

    Google Scholar 

  • Orgel L (2000) A simpler nucleic acid. Science 290:1306–1307

    Google Scholar 

  • Orgel LE (2004) Prebiotic chemistry and the origin of the RNA world. Crit Rev Biochem Mol Biol 39:99–123

    Google Scholar 

  • Oró J (1960) Synthesis of adenine from ammonium cyanide. Biochem Biophys Res Commun 2:407–412

    Google Scholar 

  • Oró J (1961) Mechanism of synthesis of adenine from hydrogen cyanide under possible primitive Earth conditions. Nature 191:1193–1194

    ADS  Google Scholar 

  • Oró J, Kimball AP (1961) Synthesis of purines under possible primitive Earth conditions I. Adenine from hydrogen cyanide. Arch Biochem Biophys 94:217–227

    Google Scholar 

  • Pasek MA (2008) Rethinking early Earth phosphorus geochemistry. Proc Natl Acad Sci USA 105:853–858

    ADS  Google Scholar 

  • Peeters Z, Botta O, Charnely SB, Ruiterkamp R, Ehrenfreund P (2003) The astrobiology of nucleobases. Astrophys J 593:L129–132

    ADS  Google Scholar 

  • Peltzer ET, Bada JL (1978) α-Hydroxycarboxylic acids in the Murchison meteorite. Nature 272:443–444

    ADS  Google Scholar 

  • Peltzer ET, Bada JL, Schlesinger G, Miller SL (1984) The chemical conditions on the parent body of the Murchison meteorite: some conclusions based on amino, hydroxy, and dicarboxylic acids. Adv Space Res 4:69–74

    ADS  Google Scholar 

  • Pitsch S, Eschenmoser A, Gedulin B, Hui S, Arrhenius G (1995) Mineral induced formation of sugar phosphates. Orig Life Evol Biosph 25:294–334

    ADS  Google Scholar 

  • Pitsch S, Wendeborn S, Krishnamurthy R, Holzner A, Minton M, Bolli M, Miculka C, Windhab N, Micura R, Stanek M, Jaun B, Eschenmoser A (2003) The β-D-ribopyranosyl-(4´  →  2´)-oligonucleotide system (“pyranosyl-RNA”): synthesis and resume of base-pairing properties. Helv Chim Acta 86:4270–4363

    Google Scholar 

  • Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459:239–242

    ADS  Google Scholar 

  • Reid C, Orgel LE (1967) Model for origin of monosaccharides: synthesis of sugars in potentially prebiotic conditions. Nature 216:455

    ADS  Google Scholar 

  • Rich A (1962) On the problems of evolution and biochemical information transfer. In: Kasha M, Pullman B (eds) Horizons in biochemistry. Academic, New York, pp 103–126

    Google Scholar 

  • Robertson MP, Miller SL (1995) An efficient prebiotic synthesis of cytosine and uracil. Nature 375:772–774

    ADS  Google Scholar 

  • Saladino R, Crestini C, Costanzo G, Negri R, Di Mauro E (2001) A possible prebiotic synthesis of purine, adenine, cytosine, and 4(3H)-pyrimidinone from formamide: implications for the origin of life. Bioorg Med Chem 9:1249–1253

    Google Scholar 

  • Sanchez RA, Orgel LE (1970) Studies in prebiotic synthesis V. Synthesis and photoanomerization of pyrimidine nucleosides. J Mol Biol 47:531–543

    Google Scholar 

  • Sanchez RA, Ferris JP, Orgel LE (1967) Studies in prebiotic synthesis. II. Synthesis of purine precursors and amino acids from aqueous hydrogen cyanide. J Mol Biol 30:223–253

    Google Scholar 

  • Sandford SA, Aléon J, Alexander CMO’D, Araki T, Bajt S, Baratta GA, Borg J, Bradley JP, Brownlee DE, Brucato JR, Burchell MJ, Busemann H, Butterworth A, Clemett SJ, Cody G, Colangeli L, Cooper G, D’Hendecourt L, Djouadi Z, Dworkin JP, Ferrini G, Fleckenstein H, Flynn GJ, Franchi IA, Fries M, Gilles MK, Glavin DP, Gounelle M, Grossemy F, Jacobsen C, Keller LP, Kilcoyne ALD, Leitner J, Matrajt G, Meibom A, Mennella V, Mostefaoui S, Nittler LR, Palumbo ME, Papanastassiou DA, Robert F, Rotundi A, Snead CJ, Spencer MK, Stadermann FJ, Steele A, Stephan T, Tsou P, Tyliszczak T, Westphal AJ, Wirick S, Wopenka B, Yabuta H, Zare RN, Zolensky ME (2006) Organics captured from comet 81P/Wild 2 by the Stardust spacecraft. Science 314:1720–1724

    ADS  Google Scholar 

  • Schmidt JG, Christensen L, Nielsen PE, Orgel LE (1997a) Information transfer from DNA to peptide nucleic acids by template- directed syntheses. Nucleic Acids Res 25:4792–4796

    Google Scholar 

  • Schmidt JG, Nielsen PE, Orgel LE (1997b) Information transfer from peptide nucleic acids to RNA by template- directed syntheses. Nucleic Acids Res 25:4797–4802

    Google Scholar 

  • Schoning K, Scholz P, Guntha S, Wu X, Krishnamurthy R, Eschenmoser A (2000) Chemical etiology of nucleic acid structure: the alpha-threofuranosyl-(3′  →  2′) oligonucleotide system. Science 290:1347–1351

    ADS  Google Scholar 

  • Schopf JW (1993) Microfossils of the early Archean Apex Chert: new evidence of the antiquity of life. Science 260:640–646

    ADS  Google Scholar 

  • Schutte WA et al (1999) Weak ice absorption features at 7.24 and 7.41 MU M in the spectrum of the obscured young stellar object W 33A. Astron Astrophys 343:966–976

    ADS  Google Scholar 

  • Schwartz AW (1993) The RNA world and its origins. Planet Space Sci 43:161–165

    ADS  Google Scholar 

  • Schwartz AW (1997) Prebiotic phosphorus chemistry reconsidered. Orig Life Evol Biosph 27:505–512

    ADS  Google Scholar 

  • Schwartz AW, Bakker CG (1989) Was adenine the first purine? Science 245:1102–1104

    ADS  Google Scholar 

  • Sephton MA (2004) Meteorite composition: organic matter in ancient meteorites. Astron Geophys 45:2.08–2.14

    Google Scholar 

  • Shapiro R (1988) Prebiotic ribose synthesis: a critical analysis. Orig Life Evol Biosph 18:71–85

    Google Scholar 

  • Sowerby SJ, Heckl WM (1998) The role of self-assembled monolayers of the purine and pyrimidine bases in the emergence of life. Orig Life Evol Biosph 28:283–310

    ADS  Google Scholar 

  • Sowerby SJ, Petersen GB (1997) Scanning tunneling microscopy of uracil monolayers self-assembled at the solid/liquid interface. J Electroanal Chem 433:85–90

    Google Scholar 

  • Sowerby SJ, Petersen GB (1999) Scanning tunnelling microscopy and molecular modelling of xanthine monolayers self-assembled at the solid–liquid interface: relevance to the origin of life. Orig Life Evol Biosph 29:597–614

    ADS  Google Scholar 

  • Sowerby SJ, Edelwirth M, Heckl WM (1998) Self-assembly at the prebiotic solid–liquid interface: structures of self-assembled monolayers of adenine and guanine bases formed on inorganic surfaces. J Phys Chem B 102:5914–5922

    Google Scholar 

  • Sowerby SJ, Cohn CA, Heckl WM, Holm NG (2001) Differential adsorption of nucleic acid bases: relevance to the origin of life. Proc Natl Acad Sci USA 98:820–822

    ADS  Google Scholar 

  • Springsteen G, Joyce GF (2004) Selective derivatization and sequestration of ribose from a prebiotic mix. J Am Chem Soc 126:9578–9583

    Google Scholar 

  • Stribling R, Miller SL (1987) Energy yields for hydrogen cyanide and formaldehyde syntheses: the HCN and amino acid concentrations in the primitive ocean. Orig Life Evol Biosph 17:261–273

    Google Scholar 

  • Symonds RB, Rose WI, Bluth GJS, Gerlach TM (1994) Volcanic gas studies—methods, results, and applications. Rev Mineral 30:1–66

    Google Scholar 

  • Urey HC (1952) The planets. Yale Univ Press, New Haven

    Google Scholar 

  • Voet AB, Schwartz AW (1983) Uracil synthesis via HCN oligomerization. Orig Life 12:45–49

    ADS  Google Scholar 

  • Wächtershäuser G (1988) Before enzymes and templates: theory of surface metabolism. Microbiol Rev 52:452–484

    Google Scholar 

  • Wächtershäuser G (1992) Groundworks for an evolutionary biochemistry: the iron sulphur world. Prog Biophys Mol Biol 58:85–201

    Google Scholar 

  • Wächtershäuser G (1997) The origin of life and its methodological chalanges. J Theor Biol 187:483–494

    Google Scholar 

  • Walker JCG (1986) Carbon dioxide on the early Earth. Orig Life 16:117–127

    ADS  Google Scholar 

  • Watson JD, Crick FHC (1953) A structure for deoxyribose nucleic acid. Nature 171:737–738

    ADS  Google Scholar 

  • White HB III (1982) In: Everse J, Anderson B, You K-S (eds) Evolution of coenzymes and the origin of pyridine nucleotides. Academic, New York, pp 1–17

    Google Scholar 

  • Winter D, Zubay G (1995) Binding of adenine and adenine-related compounds to the clay montmorillonite and the mineral hydronylapatite. Orig Life Evol Biosph 25:61–81

    ADS  Google Scholar 

  • Woese CR (1967) The genetic code: the molecular basis for gene expression. Harper and Row, New York

    Google Scholar 

  • Zhang L, Peritz AE, Meggers E (2005) A simple glycol nucleic acid. J Am Chem Soc 127:4174–4175

    Google Scholar 

  • Zhang L, Peritz AE, Meggers E (2006) Synthesis of glycol nucleic acids. Synthesis 4:645–653

    Google Scholar 

  • Zubay G (1998) Studies on the lead-catalyzed synthesis of aldopentoses. Orig Life Evol Biosph 28:13–26

    ADS  Google Scholar 

  • Zubay G, Mui T (2001) Prebiotic synthesis of nucleotides. Orig Life Evol Biosph 31:87–102

    ADS  Google Scholar 

  • ADS  Google Scholar 

Download references

Acknowledgments

The author would like to thank the Royal Society for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zita Martins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Martins, Z. (2012). Origin of the Genetic Code and Abiotic Synthesis of Organic Compounds. In: Hanslmeier, A., Kempe, S., Seckbach, J. (eds) Life on Earth and other Planetary Bodies. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4966-5_16

Download citation

Publish with us

Policies and ethics