Skip to main content

Glaciopanspermia: Seeding the Terrestrial Planets with Life?

  • Chapter
  • First Online:
Life on Earth and other Planetary Bodies

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 24))

  • 1750 Accesses

Abstract

The question whether life originated on Earth or elsewhere in the solar system has no obvious answer since the Earth was sterilized by the Moon-forming impact and possibly also during the LHB, about 700 Ma after the formation of the solar system. Seeding by lithopanspermia has to be considered: Possible sources of life include Earth itself, Mars, Venus (if it had a more benign climate than today), and the icy bodies of the solar system. The first step of lithopanspermia is the ejection of fragments of the surface into space, which requires achieving at least escape velocity. As the velocity distribution of impact ejecta falls off steeply, attention is drawn to bodies with lower escape velocities. Ceres has had, or still has, an ocean more than 100 km deep, with hydrothermal activity at its rocky core. The possible presence of life, its relative closeness to the terrestrial planets, and Ceres’ low escape velocity of 510 m/s suggest that Ceres could well be a parent body for life in the solar system.

Icy impact ejecta—hence glaciopanspermia—from Ceres will be subject to evaporation of volatiles. Spores may be loosened by evaporation and enter the atmospheres of the terrestrial planets as micrometeorites.

The seeding of the terrestrial planets from Ceres would result in (1) detection of life in the crustal layers of Ceres, (2) a commonality of Cerean life with Terran and possible Martian and Venusian life, and (3) biomarkers of Cerean life which might be found in the ices at the Moon’s poles and on the surface of other main-belt asteroids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramov O, Mojzsis SJ (2009) Microbial habitability of the Hadean Earth during the late heavy bombardment. Nature 459:419–422. doi:10.1038/nature08015

    Article  ADS  Google Scholar 

  • A’Hearn MF, Feldman PD (1992) Water vaporization on Ceres. Icarus 98:54–60

    Article  ADS  Google Scholar 

  • Canup RM, Asphaug E (2001) Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412:708–712. doi:10.1038/35089010

    Article  ADS  Google Scholar 

  • Carry B, Dumas C, Fulchignioni M, Merline WJ, Berthier J, Hestroffer D, Fusco Th, Tamblyn P (2008) Near-infrared mapping and physical properties of the dwarf-planet Ceres. Astron Astrophys 478:235–244

    Article  ADS  Google Scholar 

  • Castillo J, Vance S, McCord T, Matson D (2008) Impact of hydrothermal chemistry on the geophysical evolution of icy bodies. Astrobiology 8(2):344

    Article  ADS  Google Scholar 

  • Castillo-Rogez JC, McCord TB, Davies AG (2007) Ceres: evolution and present state. Lunar Planet Sci XXXVIII:2006–2007

    ADS  Google Scholar 

  • Cleland CE, Copley SD (2005) The possibility of alternative microbial life on Earth. Int J Astrobiol 4:165–173

    Article  Google Scholar 

  • de Duve C (1995) Cosmic dust: life as a cosmic imperative. Basic Books, New York

    Google Scholar 

  • de Pater I, Lissauer JJ (2001) Planetary sciences. Cambridge University Press, Cambridge

    Google Scholar 

  • Duprat J, Dobric E, Engrand C, Aleon J, Marrocchi Y, Mostefaoui S, Meibom A, Leroux H, Rouzaud J-N, Gounelle M, Robert F (2010) Extreme deuterium excesses in ultracarbonaceous micrometeorites from central antarctic snow. Science 328:742–745. doi:10.1126/science.1184832

    Article  ADS  Google Scholar 

  • Foucher F, Westall F, Brandstaetter F, Demets R, Parnell J, Cockell CS, Edwards HGM, Bény J-M, Brack A (2010) Testing the survival of microfossils in artificial martian sedimentary meteorites during entry into Earth’s atmosphere: the STONE 6 experiment. Icarus 207:616–630

    Article  ADS  Google Scholar 

  • Gomes R, Levison HF, Tsiganis K, Morbidelli A (2005) Origin of the cataclysmic late heavy bombardment period of the terrestrial planets. Nature 435:466–469

    Article  ADS  Google Scholar 

  • Hazen RM (2005) Genesis: the scientific quest for life’s origin. Joseph Henry, Washington, DC

    Google Scholar 

  • Horneck G, Stöffler D, Ott S, Hornemann U, Cockell CS, Moeller R, Meyer C, de Vera J-P, Fritz J, Schade S, Artemieva NA (2008) Microbial rock inhabitants survive hypervelocity impacts on Mars-like host planets: first phase of lithopanspermia experimentally tested. Astrobiology 8:17–44

    Article  ADS  Google Scholar 

  • Houtkooper JM, Schulze-Makuch D (2007) A possible biogenic origin for hydrogen peroxide on Mars: the Viking results reinterpreted. Int J Astrobiol 6:147–152. doi:10.1017/S1473550407003746

    Article  Google Scholar 

  • Houtkooper JM, Schulze-Makuch D (2008) Exploring lunar ices for past dynamic activity of the Moon and biosignatures from life on Earth. EPSC Abstracts, EPSC2008-A-00169

    Google Scholar 

  • Kleine T, Münker C, Mezger K, Palme H (2002) Rapid accretion and early core formation on asteroids and terrestrial planets from Hf-W chronometry. Nature 418:952–955

    Article  ADS  Google Scholar 

  • Kleine T, Palme H, Mezger K, Halliday AN (2005) Hf-W chronometry of lunar metals and the age and early differentiation of the Moon. Science 310:1671–1674

    Article  ADS  Google Scholar 

  • Levin GV (2007) Possible evidence for panspermia: the labelled release experiment. Int J Astrobiol 6:95–108. doi:10.1017/S1473550407003722

    Article  Google Scholar 

  • Levin GV, Straat PA (1979) Completion of the Viking labeled release experiment on Mars. J Mol Evol 14:167–183

    Article  ADS  Google Scholar 

  • Lipps J, Schulze-Makuch D (2008) Origin of life in ice: prospects for the solar system and beyond. Astrobiology 8:345

    Google Scholar 

  • McKay CP (2004) What is life – and how do we search for it in other worlds? PLoS Biol 2(9):e302, 1260–1263

    Article  Google Scholar 

  • Miner ED, Stone EC (1988) Voyager at Uranus. J Br Interplanet Soc 41(1&2):49–62

    ADS  Google Scholar 

  • Rivkin AS, Emery JP (2010) Detection of ice and organics on an asteroidal surface. Nature 464:1322–1323. doi:10.1038/nature09028

    Article  ADS  Google Scholar 

  • Rivkin AS, Volquardsen EL, Clark BE (2006) The surface composition of Ceres: discovery of carbonates and iron-rich clays. Icarus 185:563–567. doi:10.1016/j.icarus.2006.08.022

    Article  ADS  Google Scholar 

  • Rousselot P, Mousis O, Dumas C, Jehin E, Manfroid J, Carry B, Zucconi J-M (2008) A search for escaping water from Ceres’ poles. Asteroids, Comets, Meteors Abstract #8337

    Google Scholar 

  • Schorghofer N (2008) The lifetime of ice on main belt asteroids. Lunar and Planetary Science XXXIX Abstract #1351

    Google Scholar 

  • Schulze-Makuch D, Grinspoon DH, Abbas O, Irwin LN, Bullock MA (2004) A sulfur-based survival strategy for putative phototropic life in the Venusian atmosphere. Astrobiology 4:11–18

    Article  ADS  Google Scholar 

  • Schulze-Makuch D, Irwin LN (2004) Life in the universe: expectations and constraints. Springer, Berlin

    Google Scholar 

  • Sheldon RB, Hoover RB (2007) The cometary biosphere. In: Hoover RB, Levin GV, Rozanov AY, Davies PCW (eds) Instruments, methods, and missions for astrobiology X. Proceedings of the SPIE 6694, p 66940H

    Google Scholar 

  • Sleep NH, Zahnle KJ, Kasting JF, Morowitz HJ (1989) Annihilation of ecosystems by large asteroid impacts on the early Earth. Nature 342:139–142

    Article  ADS  Google Scholar 

  • Thomas PC, Binzel RP, Gaffey MJ, Storrs AD, Wells EN, Zellner BH (1997) Impact excavation on asteroid 4 Vesta: hubble space telescope results. Science 277:1492–1495

    Article  ADS  Google Scholar 

  • Touboul M, Kleine T, Bourdon B, Palme H, Wieler R (2007) Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals. Nature 450:1206–1209. doi:10.1038/nature06428

    Article  ADS  Google Scholar 

  • Vance S, Pappalardo R (2008) Long-lived serpentinization activity in habitable icy worlds. Astrobiology 8:346

    Google Scholar 

  • Vreeland RH, Rosenzweig WD, Powers DW (2000) Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407:897–900. doi:10.1038/35038060

    Article  ADS  Google Scholar 

  • Wells LE, Armstrong JC, Gonzales G (2003) Reseeding of early Earth by impacts of returning ejecta during the late heavy bombardment. Icarus 162:38–46

    Article  ADS  Google Scholar 

  • Yin Q, Jacobsen SB, Yamashita K, Blichert-Toft J, Telouk P, Albarede F (2002) A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites. Nature 418:949–952

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joop M. Houtkooper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Houtkooper, J.M. (2012). Glaciopanspermia: Seeding the Terrestrial Planets with Life?. In: Hanslmeier, A., Kempe, S., Seckbach, J. (eds) Life on Earth and other Planetary Bodies. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4966-5_11

Download citation

Publish with us

Policies and ethics