Skip to main content

Wastewater Reuse Focused on Industrial Applications

  • Chapter
  • First Online:
Wastewater Reuse and Management

Abstract

Water scarcity is a pressing problem around the world. Many countries will be experiencing severe water shortages over the next decades, and this has become an issue for both the public and private sectors. The quality required for wastewater discharge should take into consideration concerns about public health and safe use. Wastewater reuse, including recycling, is an important component of both wastewater and water resource management. There are many wastewater reuse applications that do not require drinking water quality. The types of wastewater reuse are classified in four main categories: urban uses, industrial uses, agricultural uses and groundwater recharge. According to the pollutant components, the wastewater treatment technology, and the water quality obtained, the wastewater reuse type and system are selected observing the potential constraints due to the levels of remaining residual charge. Water is provided by water companies as a service and has many other industrial purposes. The suitability of reclaimed wastewater in industry depends on the process and on the particular purpose, and different purification grades may be required. Types of wastewater reuse, characterization of water contaminants, guidelines for wastewater reuse, industrial usage, water and wastewater management, treatment technologies, mass integration and industrial reuse cases are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Howell JA (2004) Future of membranes and membrane reactors in green technologies and for water reuse. Desalination 162:1–11

    Article  CAS  Google Scholar 

  2. IWA – International Water Association (2008) Water reuse an international survey of current practice, issues and needs. In: Jimenez B (ed) Asano T Scientific. IWA Publishing, ISBN 1-84339-089-2, Technical report N. 20

    Google Scholar 

  3. Guelli U, Souza SMA, Melo AR, Ulson de Souza AA (2006) Re-utilization conditions of wastewaters from textiles industries. Resour Conserv Recycl 1:1–13

    Google Scholar 

  4. USEPA (2011) Guidelines for water reuse chapter 2. Types of reuse. http://www.epa.gov/nrmrl/pubs/625r04108/625r04108chap2.pdf. Accessed 21 Mar 2011

  5. Hespanhol I (2003) Potencial de reuso de água no Brasil: agricultura, indústria, municípios, recarga de aquíferos. Bahia Análise & Dados, Salvador v.13, n. especial. http://www.hidro.ufcg.edu.br/twiki/pub/ChuvaNet/ChuvaTrabalhosPublicados/PotencialdereusodeguanoBrasilagriculturaindstriamunicpiosrecargadeaqferos.pdf. Accessed Mar 2011

  6. Asano T et al (2007) Water reuse: issues, technologies, and applications. McGraw Hill, New York

    Google Scholar 

  7. Laws BV, Dickenson ERV, Johnson TA, Snyder SA, Drewes JE (2011) Attenuation of contaminants of emerging concern during surface-spreading aquifer recharge. Sci Total Environ 409:1087–1094

    Article  CAS  Google Scholar 

  8. Todd D (1980) Groundwater hydrology. Wiley, New York

    Google Scholar 

  9. FIESP/CIESP/ANA (2004) Conservação e reúso de água: Manual de orientações para o setor industrial. http://www.ana.gov.br/Destaque/docs/d179-breuso.pdf. Accessed 10 Mar 2011

  10. Paulino JA (2010) Engenharia no dia a dia. http://engenharianodiaadia.blogspot.com/2010/11/implantacao-de-programas-de-conservacao.html. Accessed Mar 2011

  11. Bixio D, Thoeye C, Wintgens T, Ravazzini A, Miska V, Muston M, Chikurel H, Aharoni A, Joksimovic D, Melin T (2008) Water reclamation and reuse: implemetation and management issues. Desalination 218:13–23

    Article  CAS  Google Scholar 

  12. Urkiaga A, de las Fuentes L, Bis B, Chiru E, Balasz B, Hernández F (2008) Development of analysis tools for social, economic and ecological effects of water reuse. Desalination 218:81–91

    Article  CAS  Google Scholar 

  13. Nolde E (1999) Greywater reuse systems for toilet flushing in multi-storey buildings – over ten years experience in Berlin. Urban Water 1:275–84

    Article  CAS  Google Scholar 

  14. Salgot M, Huertas E, Weber S, Dott W, Hollender J (2006) Wastewater reuse and risk: definition of key objectives. Desalination 187:29–40

    Article  CAS  Google Scholar 

  15. Metcalf & Eddy (2003) Wastewater engineering: treatment and reuse, 4th edn. McGraw-Hill, Boston. ISBN 0-07-041878-0

    Google Scholar 

  16. APHA/AWWHA/WEF (1998) Standard methods for the examination of water and wastewater, 20th edn. APHA American Public Health Association, Washington. ISBN 0-87553-235-7

    Google Scholar 

  17. NIIR Board (2004) Modern technology of waste management: pollution control, recycling, treatment & utilization. National Institute of Industrial Research, Delhi. ISBN 8178330849

    Google Scholar 

  18. USEPA (2003) Environmental regulations and technology control of pathogens and vector attraction in sewage sludge. USEPA, Cincinnati

    Google Scholar 

  19. WERF - Water Environment Research Foundation (2004) Reduction of pathogens, indicator bacteria, and alternative indicators by wastewater treatment and reclamation processes. IWA Publishing, London

    Google Scholar 

  20. Yates V (2011) Pathogens in reclaimed water. http://www.geoflow.com/wastewater/pathogens.htm. Accessed 16 Mar 2011

  21. Henjum MB, Hozalski RM, Wennen CR, Arnold W, Novak PJ (2009) Correlations between in situ sensor measurements and trace organic pollutants in urban streams. J Environ Monit. doi:10.1039/b912544b

  22. Asano T (2001) Water from (waste)water – the dependable water resource. Stockholm water symposium, Sweden

    Google Scholar 

  23. Colt J (2006) Water quality requirements for reuse systems. Aquac Eng 34:143–156

    Article  Google Scholar 

  24. Cao Q, Yu Q, Des W (2010) Connell Fate simulation and risk assessment of endocrine disrupting chemicals in a reservoir receiving recycled wastewater. Sci Total Environ 408:6243–6250

    Article  CAS  Google Scholar 

  25. Berg VM et al (1998) Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environ Health Perspect 106:775–792

    Article  Google Scholar 

  26. Berg VM, Peterson RE, Schrenk D (2000) Human risk assessment and TEFs. Food Addit Contam 17:347–358

    Article  Google Scholar 

  27. Australian Department of Environment and Heritage (2005) National plan for addressing dioxins in Australia. National Dioxins Program. Australian Government

    Google Scholar 

  28. Rodriguez C, Cook A, Devine B, Van Buynder P, Lugg R, Linge K, Weinstein P (2008) Dioxins, furans and PCBs in recycled water for indirect potable reuse. Int J Environ Res Public Health 5(5):356–367

    Article  CAS  Google Scholar 

  29. Berg VM, Birnbaum LS, Denison M, De Vito M, Farland W, Feeley M et al (2006) The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol Sci 93:223–41

    Article  Google Scholar 

  30. Radic S, Stipanicev D, Cvjetko P, Mikelic IL, Rajcic MM, Sirac S, Pevalek-Kozlina B, Pavlica M (2010) Ecotoxicological assessment of industrial effluent using duckweed (Lemna minor L.) as a test organism. Ecotoxicology 19:216–222

    Article  CAS  Google Scholar 

  31. Wang W, Freemark K (1995) The use of plants for environmental monitoring and assessment. Ecotox Environ Safe 30:289–301

    Article  CAS  Google Scholar 

  32. Rodrigues ES, Umbuzeiro GA (2011) Integrating toxicity testing in the wastewater management of chemical storage terminals – a proposal based on a ten-year study. J Hazard Mater. doi:10.1016/j.jhazmat.2010.12.083

  33. Bakopouloun S, Emmanouil C, Kungolos A (2011) Assessment of wastewater effluent quality in Thessaly region, Greece, for determining its irrigation reuse potential. Ecotoxicol Environ Saf 74:188–194

    Article  Google Scholar 

  34. Navarro AV, González MCR, López ER, Aguilar RD, Marçal WS (1999) Evaluation of daphnia magna as an indicator of toxicity and treatment efficacy of textile waste waters. Environ Int 25(5):619–624

    Article  Google Scholar 

  35. Peltier W, Weber CI (1985) Methods for measuring the acute toxicity of effluents to freshwater and marine organisms. EPA/600/4-850/013, p. 140. Cincinnati: U.S. Environmental Protection Agency

    Google Scholar 

  36. Vigneswaran SM, Sundaravadivel M. Wastewater recycle, reuse, and reclamation – recycle and reuse of domestic wastewater. http://www.eolss.net/ebooks/Sample%20Chapters/C07/E2-14-01.pdf. Accessed 16 Mar 2011

  37. Mohsen MS, Jaber JO (2002) Potential of industrial wastewater reuse. Desalination 152:281–289

    Article  Google Scholar 

  38. Volkman S (2003) Sustainable wastewater treatment and reuse in urban areas of the developing world. http://www.cee.mtu.edu/peacecorps. Accessed 16 Mar 2011

  39. Verlicchi P, Masotti L, Galletti A (2011) Wastewater polishing index: a tool for a rapid quality assessment of reclaimed wastewater. Environ Monit Assess 173:267–277

    Article  CAS  Google Scholar 

  40. Yagow G, Shanholtz V (1996) Procedures for indexing monthly NPS pollution loads from agricultural and urban fringe watersheds. In: Proceedings of watershed 96 conference, pp. 431–434. Accessed 13 July 2009

    Google Scholar 

  41. Bordalo AA, Teixeira R, Wiebe WJ (2006) A water quality index applied to an international shared river basin: the case of the Douro River. Environ Manag 38:910–920

    Article  Google Scholar 

  42. Abbasi SA (2002) Water quality indices’, state of the art report (pp. 73). Scientific contribution No. INCOH/SAR-25/2002. Roorkee: INCOH, National Institute of Hydrology

    Google Scholar 

  43. Boyacioglu H (2010) Utilization of the water quality index method as a classification tool. Environ Monit Assess 167:115–124

    Article  CAS  Google Scholar 

  44. Said A, Stevens DK, Sehlke G (2004) Environmental assessment an innovative index for evaluating water quality in streams. Environ Manag 34(3):406–414

    Article  Google Scholar 

  45. Ammary BY (2007) Wastewater reuse in Jordan: present status and future plans. Desalination 211:164–176

    Article  CAS  Google Scholar 

  46. Genon G (2011) Water recycling and on-site reuse. https://www.unido.org/foresight/rwp/dokums_pres/water_symposiun_genon_214.pdf. Accessed 16 Mar 2011

  47. Iglesias R, Ortega E, Batanero G, Quintas L (2010) Water reuse in Spain: data overview and costs estimation of suitable treatment trains. Desalination 263:1–10

    Article  CAS  Google Scholar 

  48. Campos C (1999) Indicadores de contaminación fecal en la reutilización de agua residual regenerada en suelos. In: PhD thesis, University of Barcelona

    Google Scholar 

  49. Li F, Wichmann K, Otterpohl R (2009) Review of the technological approaches for grey water treatment and reuse. Sci Total Environ 407:3439–3449

    Article  CAS  Google Scholar 

  50. Deniz F, Sadhwani JJ, Veza JM (2010) New quality criteria in wastewater reuse: the case of Gran Canaria. Desalination 250:716–722

    Article  CAS  Google Scholar 

  51. WHO (2006) WHO guidelines for the Safe use of wastewater, excreta and greywater, vol 4. WHO, Geneva. ISBN 92 4 154685 9

    Google Scholar 

  52. You SJ, Wu DC (2009) Potential for reuse of high cellulose containing wastewater after membrane bioreactor treatment. Desalination 249:721–728

    Article  CAS  Google Scholar 

  53. Bixio D, Thoeye C, De Koning J, Joksimovic D, Savic D, Wintgens T, Melin T (2006) Wastewater reuse in Europe. Desalination 187:89–101

    Article  CAS  Google Scholar 

  54. Angelakis AN, Durham B (2008) Water recycling and reuse in EUREAU countries: trends and challenges. Desalination 218:3–12

    Article  CAS  Google Scholar 

  55. Cortacáns JA (2008) Water reuse planning and management: the point of view of a contractor-operator. Desalination 218:74–80

    Article  Google Scholar 

  56. WBCSD - World Business Council for Sustainable Development (2006) Business in the world of water WBCSD water scenarios to 2025. Atar Roto Presse SA, Geneva

    Google Scholar 

  57. Aviso KB, Tan RR, Culaba AB, Cruz JB Jr (2011) Fuzzy input output model for optimizing eco-industrial supply chains under water footprint constraints. J Clean Prod 19:187–196

    Article  Google Scholar 

  58. Helmer R, Hespanhol I (2004) Water pollution control. SPon Press, London. ISBN 0419229108

    Google Scholar 

  59. FIESP-Federação e Centro das Indústrias do Estado de São Paulo. Conservação e reúso de água Manual de Orientações para o Setor Industrial, vol. 1 http://www.fiesp.com.br/publicacoes/pdf/ambiente/reuso.pdf. Accessed 16 Mar 2011

  60. Giurco S, Bossilkov A, Patterson J, Kazaglis A (2011) Developing industrial water reuse synergies in Port Melbourne: cost effectiveness, barriers and opportunities. J Clean Prod 19(8):867–876

    Article  Google Scholar 

  61. ABS – Australian Bureau of Statistics (2000) Water account data 1993–94 to 1996–97. Electronic file, unpublished

    Google Scholar 

  62. Zhao X, Chen B, Yang ZF (2009) National water footprint in an input–output framework – a case study of China 2002. Ecol Model 220:245–253

    Article  Google Scholar 

  63. Gumbo B, Forster L, Arntzen J (2005) Capacity building in water demand management as a key component for attaining millennium development goals. Phys Chem Earth 30:984–992

    Article  Google Scholar 

  64. Esquerre KPO, Kiperstok A, Mattos MC, Cohim E, Kalid R, Sales EA, Pires VM (2011) Taking advantage of storm and waste water retention basins as part of water use minimization in industrial sites. Resour Conserv Recycl 55:316–324

    Article  Google Scholar 

  65. Hammer MJ (2004) Water and wastewater technology, 5th edn. Prentice Hall, Upper Saddle River. ISBN 0-13-097325-4

    Google Scholar 

  66. Nathanson JA (2003) Basic environmental technology: water supply, water management, and pollution control, 4th edn. Prentice Hall, Upper Saddle River. ISBN 0-13-093085

    Google Scholar 

  67. El-Halwagi MM (1997) Pollution prevention through process integration: systematic design tools. Academic, San Diego

    Google Scholar 

  68. Wang YP, Smith R (1994) Wastewater minimization. Chem Eng Sci 49(7):981–1006

    Article  CAS  Google Scholar 

  69. Chakraborty A (2009) A globally convergent mathematical model for synthesizing topologically constrained water recycle networks. Comput Chem Eng 33:1279–1288

    Article  CAS  Google Scholar 

  70. Foo DCY (2008) Flowrate targeting for threshold problems and plant-wide integration for water network synthesis. J Environ Manag 88:253–274

    Article  Google Scholar 

  71. Vidigueira F, Ferreira E (2011) Estratégias de Minimização de Efluentes na Síntesee Integração de Processos. http://repositorium.sdum.uminho.pt/bitstream/1822/3408/1/CHEMPOR-MSC25%5B1%5D.pdf. Accessed 10 Mar 2011

  72. Valle EC (2005) Minimização de água e Efluentes com Considerações Econômicas e Operacionais via Programação Matemática, Dissertation. Federal University of Grande do Sul, Porto Alegre, 2005. http://www.lume.ufrgs.br/handle/10183/8170. Accessed 10 Mar 2011

  73. El-Halwagi MM, Manousiouthakis V (1989) Synthesis of mass exchange networks. AIChE J 35(8):1233–1244

    Article  CAS  Google Scholar 

  74. Bai J, Feng X, Deng C (2007) Optimization of single-contaminant regeneration reuse water systems. Trans IChemE, A, Chem Eng Res Des 85(A8):1178–1187

    Article  CAS  Google Scholar 

  75. Mann JG, Liu YA (1999) Industrial water reuse and wastewater minimization. McGraw-Hill, New York

    Google Scholar 

  76. Castro P, Matos H, Fernandes MC, Nunes CP (1999) Improvements for mass-exchange networks design. Chem Eng Sci 54:1649–1665

    Article  CAS  Google Scholar 

  77. Bandyopadhyay S, Cormos CC (2008) Water management in process industries incorporating regeneration and recycle through a single treatment unit. Ind Eng Chem Res 47(4):1111–1119

    Article  CAS  Google Scholar 

  78. Savelski M, Bagajewicz M (2000) Design of water utilization systems in process plants with a single contaminant. Water Manag 20(8):659–664

    CAS  Google Scholar 

  79. Anantha PR, Koppol MJ, Bagajewicz B, Dericks J, Savelski MJ (2004) On zero water discharge solutions in the process industry. Adv Environ Res 8(2):151–171

    Article  Google Scholar 

  80. Bagajewicz M (2001) On the use of linear models for the design of water utilization systems in process plants with a single contaminant. Trans IChemE A 79:600–610

    Article  CAS  Google Scholar 

  81. Feng X, Chu K (2004) Cost optimization of industrial wastewater reuse systems. Process Saf Environ Prot 82(B3):249–255

    Article  CAS  Google Scholar 

  82. Gunaratnam M, Alva-Argaez A, Kokossis A, Kim J-K, Smith R (2005) Automated design of total water systems. Ind Eng Chem Res 44:588–599

    Article  CAS  Google Scholar 

  83. Huang CH, Chang CT, Ling HC, Chang CC (1999) A mathematical programming model for water usage and treatment network design. Ind Eng Chem Res 38:2666–2679

    Article  CAS  Google Scholar 

  84. Takama N, Kuriyama T, Shiroko K, Umeda T (1980) Optimal water allocation in a petroleum refinery. Comput Chem Eng 4:251–258

    Article  Google Scholar 

  85. Xu DM, Hu YD, Hua B, Wang XL (2004) Optimum design of water-using network with regeneration reuse. Chinese J Chem Eng 18(2):202–207

    CAS  Google Scholar 

  86. Xu DM, Hu YD, Hua B, Wang XL (2003) Minimization of the flowrate of fresh water and corresponding regenerated water in water-using system with regeneration reuse. Chinese J Chem Eng 11(3):257–263

    CAS  Google Scholar 

  87. Feng X, Bai J, Zheng XS (2007) On the use of graphical method to determine the targets of single-contaminant regeneration recycling water systems. Chem Eng Sci 62:2127–2138

    Article  CAS  Google Scholar 

  88. Rubio-Castro E, Ponce-Ortega JM, Serna-González M, Jiménez-Gutierrez A, El-Halwagi MM (2010) A global optimal formulation for the water integration in eco-industrial parks considering multiple pollutants. Comput Chem Eng. doi:10.1016/j.compchemeng.2011.03.010

  89. Rosi OL, Casarci M, Mattioli D, De Florio L (2007) Best available technique for water reuse in textile SMEs (BATTLE LIFE Project). Desalination 206:614–619

    Article  Google Scholar 

  90. Debik E, Kaykioglu G, Coban A, Koyuncu I (2010) Reuse of anaerobically and aerobically pre-treated textile wastewater by UF and NF membranes. Desalination 256:174–180

    Article  CAS  Google Scholar 

  91. Casani S, Rouhany M, Knochel S (2005) A discussion paper on challenges and limitations to water reuse and hygiene in the food industry. Water Res 39:1134–1146

    Article  CAS  Google Scholar 

  92. Notermans S, Zwietering MH, Mead GC (1994) The HACCP concept: identification of potentially hazardous microorganisms. Food Microbiol 11:203–214

    Article  Google Scholar 

  93. Vourch M, Balannec B, Chaufer B, Dorange G (2005) Nanofiltration and reverse osmosis of model process waters from the dairy industry to produce water for reuse. Desalination 172:245–256

    Article  CAS  Google Scholar 

  94. Fähnrich A, Mavrov V, Chmiel H (1998) Membrane processes for water reuse in the food industry. Desalination 119:213–216

    Article  Google Scholar 

  95. Mavrov V, Fäihnrich A, Chmiel H (1997) Treatment of low-contaminated waste water from the food industry to produce water of drinking quality for reuse. Desalination 113:197–203

    Article  CAS  Google Scholar 

  96. Álvarez PM, Pocostales P, Beltrán FJ (2011) Granular activated carbon promoted ozonation of a food-processing secondary effluent. J Hazard Mater 185:776–783

    Article  Google Scholar 

  97. Matsumura EM, Mierzwa JC (2008) Water conservation and reuse in poultry processing plant – a case study. Conserv Recycl 52:835–842

    Article  Google Scholar 

  98. Faria DC, de Souza AAU, de Souza SMAGU (2009) Optimization of water networks in industrial processes. J Clean Prod 17:857–862

    Article  Google Scholar 

  99. Martins MAF, Amaro CAA, Souza LSS, Kalid RA, Kiperstok A (2010) New objective function for data reconciliation in water balance from industrial processes. J Clean Prod 18:1184–1189

    Article  Google Scholar 

  100. Mirbagheri SA, Poshtegal MK, Parisai MS (2010) Removing of urea and ammonia from petrochemical industries with the objective of reuse, in a pilot scale: surveying of the methods of waste water treatment. Desalination 256:70–76

    Article  CAS  Google Scholar 

  101. Gutterres M, Aquim PM, Passos JB, Trierweiler JO (2010) Water reuse in tannery beamhouse process. J Clean Prod 18:1545–1552

    Article  CAS  Google Scholar 

  102. Gutterres M, Passos JB, Aquim PM, Severo LS, Trierweiler JO (2008) Reduction of water demand and treatment cost in tanneries through reuse technique. J Am Leather Chem Assoc 103(4):138–143

    CAS  Google Scholar 

  103. Aquim PM, Gutterres M, Trierweiler JO (2010) Assessment of water management in tanneries. J Soc Leather Technol Chem 94(6):253–258

    Google Scholar 

  104. Kanagaraj J, Chandra Babu NK, Mandal AB (2008) Recovery and reuse of chromium from chrome tanning waste water aiming towards zero discharge of pollution. J Clean Prod 16:1807–1813

    Article  CAS  Google Scholar 

  105. Braeken L, Van der Bruggen B, Vandecasteele C (2004) Regeneration of brewery waste water using nanofiltration. Water Res 38:3075–3082

    Article  CAS  Google Scholar 

  106. Tay JH, Jeyaseelan S (1995) Membrane filtration for reuse of wastewater from beverage industry. Resour Conserv Recycl I5:33–40

    Article  Google Scholar 

  107. NCASI (2003) Memo report from Jay Unwin, April 23

    Google Scholar 

  108. Adewumi JR, Llemobade AA, Van Zyl JE (2010) Treated wastewater reuse in South Africa: overview, potential and challenges. Resour Conserv Recycl 55:221–231

    Article  Google Scholar 

  109. CONSEMA Resolution 129/2006. Rio Grande do Sul State, Brazil. http://www.fepam.rs.gov.br. Accessed 10 Mar 2011

  110. Council Directive 91/271/EEC. http://ec.europa.eu/environment/water/water-urbanwaste/index_en.htmljectivo. Accessed 10 Mar 2011

  111. Hoeven VN (1998) Power analysis for the NOEC: what is the probability of detecting small toxic effects on three different species using the appropriate standardized test protocols? Ecotoxicology 7:355–361

    Article  Google Scholar 

  112. Taking advantage of storm and waste water retention basins as part of water use minimization in industrial sites

    Google Scholar 

  113. USP. Espaço aberto. http://www.usp.br/espacoaberto/arquivo/2003/espaco32jun/vaipara.php?materia=0capa. Accessed Apr 2011

  114. Van den Berg M, Birnbaum LS, Denison M, De Vito M, Farland W, Feeley M (2006) World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol Sci 93:223–41

    Article  Google Scholar 

  115. WHO (1989) Health guidelines for the use of wastewater in agriculture and aquaculture. WHO Technical Report Series 778, Geneva

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariliz Gutterres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gutterres, M., de Aquim, P.M. (2013). Wastewater Reuse Focused on Industrial Applications. In: Sharma, S., Sanghi, R. (eds) Wastewater Reuse and Management. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4942-9_5

Download citation

Publish with us

Policies and ethics