Skip to main content

Continuous Wave EPR of Radicals in Solids

  • Chapter
  • First Online:
EPR of Free Radicals in Solids I

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 24))

Abstract

Continuous wave (CW) EPR and ENDOR methods for studies of the structure, dynamics and reactions of radicals in crystalline and powdered samples are reviewed. Improvements of the standard Schonland procedure to obtain the hyperfine (hfc)- and nuclear quadrupole (nqc)-coupling tensors from single crystal measurements are described, including the resolution by ENDOR measurements of the so-called Schonland ambiguity. An account of the influence of the g-anisotropy on the intensity is included in a brief review of EPR studies of powders. The microwave saturation properties are discussed in the context of quantitative EPR using software for the analysis of CW power saturation curves and for simulations of saturated EPR spectra taking into account the different microwave power dependence of the allowed and forbidden (Δm I = 1) hyperfine lines. The analysis of powder ENDOR spectra by simulations is described in considerable detail, with special emphasis on the combined influence of hfc and nqc of comparable magnitudes. Studies of the dynamics of free radicals, particularly on surfaces are summarized, including recent results concerning the adsorption/desorption and diffusion of nitrogen oxides. Software for the simulation of EPR and ENDOR powder spectra, for the analysis of internal and slow motion, and for the analysis of single crystal data, are described including addresses for downloading, when available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carrington A, McLachlan AD (1967) Introduction to magnetic resonance with applications to chemistry and chemical physics. Harper & Row, New York

    Google Scholar 

  2. Wertz JE, Bolton JR (1972) Electron spin resonance: elementary theory and practical applications. McGraw-Hill Book Company, New York

    Google Scholar 

  3. Weil JA, Bolton JR (2007) Electron paramagnetic resonance: elementary theory and practical applications, 2nd edn. Wiley, New York

    Google Scholar 

  4. Atherton NM (a) (1973) Electron spin resonance: principles and applications. Ellis Horwood, Chichester; (b) (1993) Principles of electron spin resonance. Ellis Horwood, New York

    Google Scholar 

  5. Poole CP, Farach HA (1987) Theory of magnetic resonance, 2nd edn. Wiley, New York

    Google Scholar 

  6. Ayscough PB (1967) Electron spin resonance in chemistry. Methuen & Co Ltd, London

    Google Scholar 

  7. Bljumenfeld LA, Wojewodski WW, Semjonov AG (1966) Anwendung der paramagnetischen Elektronenresonanz in der Chemie, AkademischeVerlagsgesellschaft. Guest &Portig K-G, Leipzig

    Google Scholar 

  8. Gordy W (1980) Theory and applications of ESR. Wiley, New York

    Google Scholar 

  9. Rieger PH (2007) Electron spin resonance – analysis and interpretation. RSC Publishing, Cambridge

    Google Scholar 

  10. Brustolon MR, Giamello E (eds) (2009) Electron paramagnetic resonance: a practitioner’s toolkit. Wiley, Hoboken

    Google Scholar 

  11. Atkins PW, Symons MCR (1967) The structure of inorganic radicals. An application of ESR to the study of molecular structure. Elsevier Publishing Company, Amsterdam

    Google Scholar 

  12. Pshezhetskii SYa, Kotov AG, Milinchuk VK, Roginski VA, Tupilov VI (1974) EPR of free radicals in radiation chemistry. Wiley, New York

    Google Scholar 

  13. Box HC (1977) Radiation effects, ESR and ENDOR analysis. Academic, New York

    Google Scholar 

  14. Yordanov ND (ed) (1992) Electron magnetic resonance in disordered systems. World Scientific, Singapore

    Google Scholar 

  15. Lund A, Shiotani M (eds) (1991) Radical ionic systems. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  16. Lund A, Rhodes C (eds) (1995) Radicals on surfaces. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  17. Rånby B, Rabek JF (1977) ESR spectroscopy in polymer research. Springer, Berlin

    Book  Google Scholar 

  18. Schlick S (ed) (2006) Advanced ESR methods in polymer research. Wiley, Hoboken

    Google Scholar 

  19. Royal Society of Chemistry (1973–2010) Electron paramagnetic resonance. Thomas Graham House, Cambridge

    Google Scholar 

  20. Springer Materials. The Landolt-Börnstein Database, http://www.springermaterials.com/navigation

  21. Fischer H (1965–1989) Magnetic properties of free radicals. In: Landolt-Börnstein (ed) Numerical data and functional relationships in science and technology. Springer, Berlin

    Google Scholar 

  22. Bresgunov AYu, Dubinsky AA, Poluektov OG, Lebedev YaS, Prokofev AI (1992) The structure of phenoxyl radicals as studied by 2 mm band ESR. Mol Phys 75:1123–1131

    Article  Google Scholar 

  23. Riedi PC, Smith GM (2002) Progress in high-field EPR. In: Royal Society of Chemistry (ed) Electron paramagnetic resonance, vol 18. Thomas Graham House, Cambridge, pp 254–303

    Chapter  Google Scholar 

  24. Huber M (2009) Introduction to magnetic resonance methods in photosynthesis. Photosynth Res 102:305–310

    Article  CAS  Google Scholar 

  25. Savitsky A, Möbius K (2009) High-field EPR. Photosynth Res 102:311–333

    Article  CAS  Google Scholar 

  26. Goldfarb D (guest editor) (2009) Modern EPR spectroscopy. PCCP 11:6537–6860

    Google Scholar 

  27. Grinberg O, Berliner LJ (eds) (2004) Very high frequency (VHF) ESR/EPR, vol 22, Biological magnetic resonance. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  28. Möbius K, Savitsky A (2009) High-field EPR spectroscopy on proteins and their model systems. Royal Society of Chemistry, Cambridge

    Google Scholar 

  29. Schonland DS (1959) On the determination of the principal g-values in electron spin resonance. Proc Phys Soc 73:788–792

    Article  Google Scholar 

  30. (a) Byberg JR, Jensen SJK, Muus LT (1966) ESR spectra from paramagnetic centers in irradiated KCIO4. I. The CIO2 center. J Chem Phys 46:131–137; (b) Byberg JR (1995) Single crystal study of ClOO. Matrix effects in the EPR and IR spectra of ClOO trapped in KClO4. J Phys Chem 99:13392–13396

    Google Scholar 

  31. Heinzer J (1971) Fast computation of exchange-broadened isotropic ESR spectra. Mol Phys 22:167–177

    Article  CAS  Google Scholar 

  32. Schneider DJ, Freed JH (1989) Calculating slow-motional magnetic resonance spectra: a user’s guide. In: Berliner LJ, Reuben J (eds) Spin labelling. Theory and applications, Biological Magnetic Resonance 8, vol III. Plenum, New York, pp 1–76

    Google Scholar 

  33. Synge JL, Griffith BA (1959) Principles of mechanics, 3rd edn. McGraw-Hill Book Company, New York, pp 259–261

    Google Scholar 

  34. Weil JA, Anderson YH (1961) Direct field effects in electron paramagnetic resonance (EPR) hyperfine spectra. J Chem Phys 35:1410–1417

    Article  CAS  Google Scholar 

  35. Lund A, Vänngård T (1965) Note on the determination of the principal fine and hyperfine coupling constants in ESR. J Chem Phys 42:2979

    Article  CAS  Google Scholar 

  36. Pake GE (1962) Paramagnetic resonance. Benjamin, New York

    Google Scholar 

  37. Lefebvre R, Maruani J (1965) Use of computer programs in the interpretation of electron paramagnetic resonance spectra of dilute radicals in amorphous solid samples. 1. High field treatment. X-band spectra of π-electron unconjugated hydrocarbon radicals. J Chem Phys 42:1480–1496

    Article  CAS  Google Scholar 

  38. Poole CP Jr, Farach HA (1971) Influence of the nuclear Zeeman term on anisotropic hyperfine patterns in electron spin resonance. J Magn Reson 4:312–321

    CAS  Google Scholar 

  39. Bergene R (1977) Free radicals in pyrimidines: single crystals of dihydro-6-methyl uracil irradiated and observed at 77 K. Int J Radiat Biol 31:17–34

    Article  CAS  Google Scholar 

  40. McConnell HM, Heller C, Cole T, Fessenden RW (1960) Radiation damage in organic crystals. I. CH(COOH)2 in malonic acid. J Am Chem Soc 82:766–775

    Article  CAS  Google Scholar 

  41. Lindgren M, Gustafsson T, Westerling J, Lund A (1986) ESR characterization of the hydroxyalkyl radical in single crystals of 1,6- hexanediol and 1,8-octanediol and crystal structure of 1,6-hexanediol. Chem Phys 106:441–446

    Article  CAS  Google Scholar 

  42. Claesson O, Lund A, Jørgensen JP, Sagstuen E (1980) Electron spin resonance of irradiated crystals of 2-thiouracil; hyperfine coupling tensor for nuclei with I = ½. J Magn Reson 41:229–239

    CAS  Google Scholar 

  43. Iwasaki M (1974) Second-order perturbation treatment of the general spin Hamiltonian in an arbitrary coordinate system. J Magn Reson 16:417–423

    CAS  Google Scholar 

  44. Thuomas KÅ, Lund A (1975) Evaluation of hyperfine and quadrupole tensors from ENDOR measurements on single crystals. J Magn Reson 18:12–21

    CAS  Google Scholar 

  45. Sørnes AR, Sagstuen E, Lund A (1995) 14N Quadrupole and hyperconjugative hyperfine coupling in 2-aminoethyl hydrogen sulfate X-irradiated at 295 K. Single crystal ENDOR analysis, UHF-INDO MO calculations. J Phys Chem 99:16867–16876

    Article  Google Scholar 

  46. Vrielinck H, DeCooman H, Tarpan MA, Sagstuen E, Waroquier M, Callens F (2008) Schonland ambiguity in the electron nuclear double resonance analysis of hyperfine interactions: principles and practice. J Magn Reson 195:196–205

    Article  CAS  Google Scholar 

  47. (a) Nelson WH (1980) Estimation of errors in eigenvectors and eigenvalues from magnetic resonance results by use of linear data-fitting techniques. J Magn Reson 38:71–78; (b) Nelson WH, Nave CR (1981) ESR and ENDOR studies of radicals produced in hydroxyproline single crystals by x-irradiation at low temperature. J Chem Phys 74:2710–2716

    Google Scholar 

  48. Thuomas KÅ, Lund A (1976) Analysis of EPR with large quadrupole interaction. J Magn Reson 22:315–325

    CAS  Google Scholar 

  49. Lund A, Erickson R (1998) EPR and ENDOR simulations for disordered systems: the balance between efficiency and accuracy. Acta Chem Scand 52:261–274

    Article  CAS  Google Scholar 

  50. Lund A, Shiotani M (eds) (2003) EPR of free radicals in solids. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  51. Westerling J, Lund A (1988) 23Na hyperfine and quadrupolar interactions with CO 2 in sodium hydrogen oxalate. An ENDOR study. Chem Phys Lett 147:111–115

    Article  CAS  Google Scholar 

  52. Rockenbauer A, Simon P (1973) Second-order perturbation treatment of spin Hamiltonian for low symmetry. J Magn Reson 11:217–218

    CAS  Google Scholar 

  53. Weil JA (1975) Comments on second-order spin-hamiltonian energies. J Magn Reson 18:113–116

    CAS  Google Scholar 

  54. Fox B, Holuj F, Baylis WE (1973) A new fitting procedure. The ESR spectrum of Gd3+ in Ca(OH)2. J Magn Reson 10:347–354

    CAS  Google Scholar 

  55. Hellmann H (1937) Einführung in die Quantenchemie. Franz Deuticke, Leipzig, p 285

    Google Scholar 

  56. Ponti NA, Oliva C (1992) Tensor: a program to extract hyperfine tensors from single crystal EPR and ENDOR data. Comput Chem 16:233–238

    Article  CAS  Google Scholar 

  57. (a) Son NT, Henry A, Isoya J, Katagiri M, Umeda T, Gali A, Janzén E (2006) Electron paramagnetic resonance and theoretical studies of shallow phosphorous centers in 3C-4H-, and 6H-SiC. Phys Rev B 73:075201–075216; (b) Son NT, Isoya J, Umeda T, Ivanov IG, Henry A, Ohshima T, Janzén E (2010) EPR and ENDOR studies of shallow donors in SiC. Appl Magn Reson 39:49–85

    Google Scholar 

  58. Lee HI, Doan PE, Hoffman BM (1999) General analysis of 14N (I = 1) electron spin echo envelope modulation. J Magn Reson 140:91–107

    Article  CAS  Google Scholar 

  59. Erickson R (a) (1996) Simulation of ENDOR spectra of radicals with anisotropic hyperfine and nuclear quadrupolar interactions in disordered solids. Chem Phys 202:263–275; (b) (1995) Electron magnetic resonance of free radicals. Theoretical and experimental EPR, ENDOR and ESEEM studies of radicals in single crystal and disordered solids. Dissertation, Linköping University

    Google Scholar 

  60. Stone AJ (a) (1963) g factors of aromatic free radicals. Mol Phys 6:509–515; (b) (1964) g tensors of aromatic hydrocarbons. Mol Phys 7:311–316

    Google Scholar 

  61. YaS L, Rakhimov RR, Prokof’ev AI, Brezgunov AYu (1992) Fast molecular dynamics: novel effects studied by 3 cm and 2 mm band EPR. Pure Appl Chem 64:873–881

    Article  Google Scholar 

  62. Rakhimov RR, Benetis NP, Lund A, Hwang JS, Prokof’ev AI, Lebedev YS (1996) Intramolecular and reorientation dynamics of bis(triphenylphosphine)- 3,6-di-tert-butyl-4,5-dimethoxy-o-semiquinone complex of copper(I) in viscous media. Chem Phys Lett 255:156–162

    Article  CAS  Google Scholar 

  63. Lakshmi KV, Reifler MJ, Brudvig GW, Poluektov OG, Wagner AM, Thurnauer MC (2000) High-field EPR study of carotenoid and chlorophyll cation radicals in photosystem II. J Phys Chem B 104:10445–10448

    Article  CAS  Google Scholar 

  64. Okafuji A, Schnegg A, Schleicher E, Möbius K, Weber S (2008) G-tensors of the flavin adenine dinucleotide radicals in glucose oxidase: a comparative multifrequency electron paramagnetic resonance and electron − nuclear double resonance study. J Phys Chem B 112:3568–3574

    Article  CAS  Google Scholar 

  65. Christoforidis KC, Un S, Deligiannakis Y (2007) High-Field 285 GHz Electron paramagnetic resonance study of indigenous radicals of humic acids. J Phys Chem A 111:11860–11866

    Article  CAS  Google Scholar 

  66. Pöppl A, Rudolf T, Monikanolen P, Goldfarb D (2000) W- and X-band pulsed electron nuclear double-resonance study of a sodium − nitric oxide adsorption complex in NaA zeolites. J Am Chem Soc 122:10194–10200

    Article  CAS  Google Scholar 

  67. (a) Rudolf T, Pöppl A, Hofbauer W, Michel D (2001) X, Q and W band electron paramagnetic resonance study of the sorption of NO in Na-A and Na-ZSM-5 zeolites. PCCP 3:2167–2173; (b) Rudolf T, Böhlmann W, Pöppl A (2002) Adsorption and desorption behavior of NO on H-ZSM-5, Na-ZSM-5, and Na-A as studied by EPR. J Magn Res 155:45–56

    Google Scholar 

  68. Brustolon M, Maniero AL, Corvaja C (1984) EPR and ENDOR investigation of tempone nitroxide radical in a single crystal of tetramethyl-1,3-cyclobutanedione. Mol Phys 51:1269–1281

    Article  CAS  Google Scholar 

  69. Shiotani M, Freed JH (1981) ESR studies of NO2 adsorbed on surfaces. Analysis of motional dynamics. J Phys Chem 85:3873–3883

    Article  CAS  Google Scholar 

  70. Lund A, Shiotani M, Shimada S (2011) Principles and applications of ESR spectroscopy. Springer, Dordrecht/London

    Book  Google Scholar 

  71. (a) Maruani J, McDowell CA, Nakajima H, Raghunathan P (1968) The electron spin resonance spectra of randomly oriented trifluoromethyl radicals in rare-gas matrixes at low temperatures. Mol Phys 14:349–366; (b) Maruani J, Coope JAR, McDowell CA (1970) Detailed analysis of the singularities and origin of the ‘extra’ lines in the ESR spectrum of the CF3 radical in a polycrystalline matrix. Mol Phys 18:165–176

    Google Scholar 

  72. (a) Shiotani M, Person P, Lunell S, Lund A, Williams F (2006) Structures of tetrafluorocyclopropene, hexafluorocyclobutene, octafluorocyclopentene and related perfluoroalkene radical anions revealed by electron spin resonance spectroscopic and computational studies. J Phys Chem A 110:6307–6323; (b) Shiotani M, Lund A, Lunell S, Williams F (2007) Structures of the hexafluorocyclopropane, octafluorocyclobutane, and decafluorocyclopentane radical anions probed by experimental and computational studies of anisotropic electron spin resonance (ESR) spectra. J Phys Chem A 111:321–338

    Google Scholar 

  73. Herring FG, McDowell CA (1972) Electron spin resonance spectrum of the chlorodisulfanyl (S2Cl) radical in inert matrices at 4.2 K. J Chem Phys 57:4564–4570

    Article  CAS  Google Scholar 

  74. Kokatam S, Ray K, Pap J, BillE GWE, LeSuer RJ, Rieger PH, Weyhermüller T, Neese F, Wieghardt K (2007) Molecular and electronic structure of square-planar gold complexes containing two 1,2-di(4-tert-butylphenyl)ethylene-1,2-dithiolato ligands: [Au(2L)2]1+/0/1-/2-. A combined experimental and computational study. Inorg Chem 46:1100–1111

    Article  CAS  Google Scholar 

  75. Lund A, Andersson P, Eriksson J, Hallin J, Johansson T, Jonsson R, Loefgren H, Paulin C, Tell A (2008) Automatic fitting procedures for EPR spectra of disordered systems: matrix diagonalization and perturbation methods applied to fluorocarbon radicals. Spectrochim Acta 69A:1294–1300

    CAS  Google Scholar 

  76. Aasa R, Vänngård T (1975) EPR signal intensity and powder shapes: a reexamination. J Magn Reson 19:308–315

    CAS  Google Scholar 

  77. Clarkson RB, Belford RL, Rothenberger KS, Crookham HC (1987) ENDOR of perylene radicals adsorbed on alumina and silica-alumina powders. I. The ring protons. J Catal 106:500–511

    Article  CAS  Google Scholar 

  78. Wu Y, Piekara-Sady L, Kispert LD (1991) Photochemically generated carotenoid radicals on nafion film and silica gel: an EPR and ENDOR study. Chem Phys Lett 180:573–577

    Article  CAS  Google Scholar 

  79. Erickson R, Lindgren M, Lund A, Sjöqvist L (1993) Ionic radicals on silica surfaces – an EPR, ENDOR and ESE study of benzene radical cations adsorbed on HY and silica gel. Colloids Surf A 72:207–216

    Article  CAS  Google Scholar 

  80. Erickson R, Lund A, Lindgren M (1995) Analysis of powder EPR and ENDOR spectra of the biphenyl radical cation on H-ZSM-5 zeolite, silica gel and in CFCl3 matrix. Chem Phys 193:89–99

    Article  CAS  Google Scholar 

  81. Gerson F, Qin XZ (1988) The radical cation of naphthalene: first correct analysis of its ESR spectrum. Chem Phys Lett 153:546–550

    Article  CAS  Google Scholar 

  82. Gerson F (1994) Applications of ENDOR spectroscopy to radical cations in freon matrixes. Acc Chem Res 27:63–69

    Article  CAS  Google Scholar 

  83. Lindgren M, Erickson R, Benetis NP, Antzutkin ON (1993) The [2H8]THF radical cation in 1,1,1-trichloro-2,2,2-trifluoroethane and trichlorofluoromethane. An EPR and ENDOR study. J Chem Soc Perkin Trans II:2009–2014

    Google Scholar 

  84. O’Malley PJ, Babcock GT (1986) Powder ENDOR spectra of p-benzoquinone anion radical: principal hyperfine tensor components for ring protons and for hydrogen-bonded protons. J Am Chem Soc 108:3995–4001

    Article  Google Scholar 

  85. Van Doorslaer S, Callens F, Maes F, Boesman E (1995) Single-crystal and powder electron-nuclear double resonance of RbCl:O -2 : a comparison between the spin Hamiltonian parameters obtained from both experiments. Phys Rev B 51:12480–12490

    Article  Google Scholar 

  86. Kadam RM et al (a) (1998) ENDOR and EPR studies of benzene radical cations in halocarbon matrices: the static Jahn–Teller distortion of the monomer and geometry of the dimer cation. Chem Phys Lett 290:371–378; (b) (1999) Studies of radical cations of methyl-substituted benzene in halocarbon matrices. J Phys Chem A 103:1480–1486; (c) (1999) An EPR, ENDOR and ESEEM study of the benzene radical cation in CFCl3 matrix: isotopic substitution effects on structure and dynamics. PCCP 1:4967–4973

    Google Scholar 

  87. Itagaki Y, Kadam RM, Lund A, Benetis NP (2000) Structure of dimeric radical cations of benzene and toluene in halocarbon matrices: an EPR, ENDOR and MO study. PCCP 2:2683–2689

    Article  CAS  Google Scholar 

  88. Dalton LR, Kwiram AL (1972) ENDOR [electron-nuclear double resonance] studies in molecular crystals. II. Computer analysis of the polycrystalline ENDOR spectra of low-symmetry materials. J Chem Phys 57:1132–1145

    Article  CAS  Google Scholar 

  89. LoBrutto R, Wei YH, Mascarenhas R, Scholes CP, King TE (1983) Electron nuclear double resonance and electron paramagnetic resonance study on the structure of the NO-ligated heme alpha 3 in cytochrome c oxidase. J Biol Chem 258:7437–7448

    CAS  Google Scholar 

  90. Bender CJ, Sahlin M, Babcock GT, Barry BA, Chandrasekar TK, Salowe SP, Stubbe J, Lindström B, Pettersson L, Ehrenberg A, Sjöberg BM (1989) An ENDOR study of the tyrosyl free radical in ribonucleotidereductase from escherichia coli. J Am Chem Soc 111:8076–8083

    Article  CAS  Google Scholar 

  91. Tommos C, Tang X-S, Warncke K, Hoganson CW, Styring S, McCracken J, Diner BA, Babcock GT (1995) Spin-density distribution, conformation, and hydrogen bonding of the redox-active tyrosine YZ in photosystem II from multiple-electron magnetic-resonance spectroscopies: implications for photosynthetic oxygen evolution. J Am Chem Soc 117:10325–10335

    Article  CAS  Google Scholar 

  92. Whiffen DH (1966) ENDOR transition moments. Mol Phys 10:595–596

    Article  CAS  Google Scholar 

  93. Toriyama K, Nunome K, Iwasaki M (1976) ENDOR studies of methyl radicals in irradiated single crystals of lithium acetate dihydrate. J Chem Phys 64:2020–2026

    Article  CAS  Google Scholar 

  94. Schweiger A, Günthard HsH (1982) Transition probabilities in electron-nuclear double- and multiple-resonance spectroscopy with non-coherent and coherent radio-frequency fields. Chem Phys 70:1–22

    Article  CAS  Google Scholar 

  95. Rist GH, Hyde JS (1970) Ligand ENDOR of metal complexes in powders. J Chem Phys 52:4633–4643

    Article  CAS  Google Scholar 

  96. (a) Hoffman BM, Martinsen J, Venters RA (1984) General theory of polycrystalline ENDOR patterns. g and hyperfine tensors of arbitrary symmetry and relative orientation. J Magn Reson 59:110–123; (b) Hoffman BM, Gurbiel RJ (1989) Polycrystalline ENDOR patterns from centers with axial EPR spectra. General formulas and simple analytic expressions for deriving geometric information from dipolar couplings. J Magn Reson 82:309–317

    Google Scholar 

  97. Hurst GG, Henderson TA, Kreilick RW (1985) Angle-selected ENDOR spectroscopy. 1. Theoretical interpretation of ENDOR shifts from randomly orientated transition-metal complexes. J Am Chem Soc 107:7294–7299

    Article  CAS  Google Scholar 

  98. Attanasio D (1989) Structural information from powder endor spectroscopy. Possibilities and limitations. J Chem Soc Faraday Trans 185:3927–3937

    Google Scholar 

  99. Gochev GP, Yordanov ND (1993) Polycrystalline “Endor Crystallography”, A new methodological approach. J Magn Reson A 102:180–182

    Article  CAS  Google Scholar 

  100. Kreiter A, Hüttermann J (1991) Simultaneous EPR and ENDOR powder-spectra synthesis by direct Hamiltonian diagonalization. J Magn Reson 93:12–26

    CAS  Google Scholar 

  101. Kappl R, Bracic G, Hüttermann J (2009) Probing structural and electronic parameters in randomly oriented metalloproteins by orientation-selective ENDOR spectroscopy. Biol Mag Reson 28(Part 1):63–103

    Google Scholar 

  102. Goldfarb D (2006) High field ENDOR as a characterization tool for functional sites in microporous materials. Phys Chem Chem Phys 8:2325–2343

    Article  CAS  Google Scholar 

  103. Murphy DM, Farley RD (2006) Principles and applications of ENDOR spectroscopy for structure determination in solution and disordered matrices. Chem Soc Rev 35:249–268

    Article  CAS  Google Scholar 

  104. Kurreck H, Kirste B, Lubitz W (1988) Electron nuclear double resonance spectroscopy of radicals in solution – application to organic and biological chemistry. VCH Verlagsgesellschaft, Weinheim

    Google Scholar 

  105. Chacko VP, McDowell CA, Singh BC (1980) 14N and 1H ENDOR studies of x-irradiated single crystals of hippuric acid. J Chem Phys 72:4111–4116

    Article  CAS  Google Scholar 

  106. Heydari MZ, Malinen E, Hole EO, Sagstuen E (2002) Alanine radicals. 2. The composite polycrystalline alanine EPR spectrum studied by ENDOR. Thermal annealing, and spectrum simulations. J Phys Chem A 106:8971–8977

    Article  CAS  Google Scholar 

  107. Komaguchi K, Matsubara Y, Shiotani M, Gustafsson H, Lund E, Lund A (2007) An ESR and ENDOR study of irradiated 6Li-formate. Spectrochim Acta Part A 66:754–760

    Article  CAS  Google Scholar 

  108. Vänngård T, Aasa R (1963) ESR (electron spin resonance) line shapes of polycrystalline samples of S’ = 1/2 transition element ions. Proceedings of the first international conference on paramagnetic resonance, vol II, Academic, New York, pp 509–519

    Google Scholar 

  109. Stoll S, Schweiger A (2006) EasySpin. A comprehensive software package for spectral simulation and analysis in EPR. J Magn Reson 178:42–55

    Article  CAS  Google Scholar 

  110. Portis AM (1953) Electronic structure of F centers: saturation of electron spin resonance. Phys Rev 91:1071–1079

    Article  CAS  Google Scholar 

  111. Castner TG Jr (1959) Saturation of the paramagnetic resonance of a V center. Phys Rev 115:1506–1515

    Article  CAS  Google Scholar 

  112. Zhidkov OP, YaS L, Mikhailov AI, Provotorov BN (1967) Deduction of relaxation parameters from saturation in non-uniformly broadened lines. Theor Exp Chem 3:135–139

    Article  Google Scholar 

  113. Maruani J (1972) Continuous saturation of “dispersion” singularities and application to molecular triplet states. J Magn Reson 7:207–218

    CAS  Google Scholar 

  114. Zimbrick J, Kevan L (1967) Paramagnetic relaxation of trapped electrons in irradiated alkaline ices. J Chem Phys 47:2364–2371

    Article  CAS  Google Scholar 

  115. Gillbro T, Lund A (1974) Relative concentrations and relaxation properties of isomeric alkyl radicals in γ-irradiated n-alkane single crystals. Chem Phys 5:283–290

    Article  CAS  Google Scholar 

  116. Schneider F, Plato M (1971) Elektronenspin-Resonanz. Verlag Karl Thiemig, München

    Google Scholar 

  117. Lund A, Sagstuen E, Sanderud A, Maruani J (2009) Relaxation-time determination from continuous-microwave saturation of EPR spectra. Radiat Res 172:753–760

    Article  CAS  Google Scholar 

  118. Gautschi NW (a) (1969) Algorithm 363. Complex error function. Commun ACM 12:635; (b) (1970) Efficient computation of the complex error function. SIAM J Num Anal 7:187–198

    Google Scholar 

  119. Schlick S, Kevan L (1976) The application of differential saturation to distinguish radial and angular modulation mechanisms of electron spin-lattice relaxation. J Magn Reson 22:171–181

    CAS  Google Scholar 

  120. Copeland ES (1973) A simple method for estimating H1 in ESR experiments–the microwave power saturation of γ-irradiation induced glycylglycine radicals. Rev Sci Instrum 44:437–442

    Article  CAS  Google Scholar 

  121. Harbridge JR, Eaton SS, Eaton GR (2003) Electron spin-lattice relaxation processes of radicals in irradiated crystalline organic compounds. J Phys Chem A 107:598–610

    Article  CAS  Google Scholar 

  122. Brustolon M, Segre U (1994) Electron spin-lattice relaxation-time and spectral diffusion in gamma-irradiated l-alanine. Appl Magn Reson 7:405–413

    Article  CAS  Google Scholar 

  123. Olsson S, Sagstuen E, Bonora M, Lund A (2002) EPR dosimetric properties of 2-methylalanine: EPR, ENDOR and FT-EPR investigations. Radiat Res 157:113–121

    Article  CAS  Google Scholar 

  124. Sagstuen E, Hole EO, Haugedal SR, Lund A, Eid OI, Erickson R (1997) EPR and ENDOR analysis of X-irradiated L-alanine and NaHC2O4∙H2O. Simulation of microwave power dependence of satellite lines. Nukleonika 42:353–372

    CAS  Google Scholar 

  125. Sagstuen E, Lund A, Itagaki Y, Maruani J (2000) Weakly coupled proton interactions in the malonic acid radical: single crystal ENDOR analysis and EPR simulation at microwave saturation. J Phys Chem A 104:6362–6371

    Article  CAS  Google Scholar 

  126. Zamoramo-Ulloa R, Flores-Llamas H, Yee-Madeira H (1992) Calculation of the relaxation times for an inhomogeneously broadened ESR line. J Phys D Appl Phys 25:1528–1532

    Article  Google Scholar 

  127. Lund A, Thuomas KÅ, Maruani J (1978) Calculation of powder ESR spectra with hyperfine and quadrupole interactions. Application to mono- and dichloroalkyl radicals. J Magn Reson 30:505–514

    CAS  Google Scholar 

  128. Benetis NP et al (a) (1990) Intramolecular dynamics in small radicals with anisotropic magnetic interactions. 1. ESR lineshapes of carboxymethyl(1-) trapped in irradiated zinc acetate single crystal. Appl Magn Reson 1:267–281; (b) (1994) Rotation of deuterated methylene groups in the diffusional regime. Isotope effect of anisotropic α-deuterons on ESR lineshapes of •CD2-COO- radical in irradiated ZnAc dihydrate single crystal. Chem Phys Lett 218:551–556

    Google Scholar 

  129. (a) Brynda M, Berclaz T, Geoffroy M (2000) Intramolecular motion in dibenzobarrelenephosphinyl radical: a single crystal EPR study at variable temperature. Chem Phys Lett 323:474–481; (b) Brynda M, Dutan C, Berclaz T, Geoffroy M, Bernardinelli G (2003) Intramolecular motion in the triptycenegermanyl radical: single crystal EPR study at variable temperature and DFT calculations, J Phys Chem Solids 64:939–946; (c) Brynda M, Dutan C, Berclaz T, Geoffroy M (2002) Dynamic phenomena in barrelenephosphinyl radicals: a complementary approach by density matrix analysis of EPR spectra and DFT calculations. Curr Top Biophys 26:35–42

    Google Scholar 

  130. Kubodera H, Shida T, Shimokoshi K (1981) ESR evidence for the cation radicals of tetrahydrofurans and dimethyl ether produced in a γ-irradiated frozen matrix of trichlorofluoromethane. J Phys Chem 85:2583–2588

    Article  CAS  Google Scholar 

  131. Naumov S, Janovsky I, Knolle W, Mehnert R (2003) Radical cations of tetrahydropyran and 1,4-dioxane revisited: quantum chemical calculations and low-temperature EPR results. Phys Chem Chem Phys 5:3133–3139

    Article  CAS  Google Scholar 

  132. Sjöqvist L, Lund A, Maruani J (1988) An ESR investigation of the dynamical behavior of the cyclopentane cation in CF3CCl3. Chem Phys 125:293–298

    Article  Google Scholar 

  133. Sjöqvist L (1991) The electron structure and dynamics of organic radical cations studied by ESR spectroscopy. Dissertation, Linköping University

    Google Scholar 

  134. Sjöqvist L, Lindgren M, Lund A (1989) Internal motion of the cyclopentyl radical in CF2ClCFCl2: an ESR investigation. Chem Phys Lett 156:323–327

    Article  Google Scholar 

  135. Lloyd RV, Wood DE (1977) Electron paramagnetic resonance study of inversion barriers and conformations in substituted cyclopentyl radicals. J Am Chem Soc 99:8269–8273

    Article  CAS  Google Scholar 

  136. Toriyama K (1991) ESR studies on cation radicals of saturated hydrocarbons. Structure, orbital degeneracy, dynamics and reactions. Top Mol Organ Eng 6:99–124

    CAS  Google Scholar 

  137. Sjöqvist L, Lindgren M, Shiotani M, Lund A (1990) Mirror inversion of the low-symmetry ground-state structures of the methylcyclohexane and 1,1-dimethylcyclohexane radical cations. An electron paramagnetic resonance study. J Chem Soc Faraday Trans 86:3377–3382

    Article  Google Scholar 

  138. Melekhov VI, Anisimov OA, Sjöqvist L, Lund A (1990) The electronic structure of cis- and trans-decalin radical cations in halocarbon matrices: an ESR and MNDO study. Chem Phys Lett 174:95–102

    Article  CAS  Google Scholar 

  139. Shiotani M, Sjoeqvist L, Lund A, Lunell S, Eriksson L, Huang MB (1990) An ESR and theoretical ab initio study of the structure and dynamics of the pyrrolidine radical cation and the neutral 1-pyrrolidinyl radical. J Phys Chem 94:8081–8090

    Article  CAS  Google Scholar 

  140. Antzutkin ON, Benetis NP, Lindgren M, Lund A (1993) Molecular motion of the morpholin-1-yl radical in CF2ClCFCl2 as studied by ESR. Use of residual anisotropy of powder spectra to extract dynamics. Chem Phys 169:195–205

    Article  CAS  Google Scholar 

  141. Sjöqvist L, Benetis NP, Lund A, Maruani J (1991) Intramolecular dynamics of the C4H8NH radical cation. An application of the anisotropic exchange theory for powder ESR lineshapes. Chem Phys 156:457–464

    Article  Google Scholar 

  142. Benetis NP, Sjöqvist L, Lund A, Maruani J (1991) Theoretical comparison and experimental test of the secular and nonperturbative approaches on the ESR lineshapes of randomly oriented, anisotropic systems undergoing internal motion. J Magn Reson 95:523–535

    CAS  Google Scholar 

  143. Liu W (2001) Structure and molecular dynamics of radicals trapped in organic–inorganic composites. Dissertation, Hiroshima University

    Google Scholar 

  144. Liu W, Wang P, Komaguchi K, Shiotani M, Michalik J, Lund A (2000) Structure and dynamics of [(CH3)3N–CH2]+• radical generated in γ-irradiated Al-offretite. PCCP 2:2515–2519

    Article  CAS  Google Scholar 

  145. Liu W, Yamanaka S, Shiotani M, Michalik J, Lund A (2001) Structure and dynamics of triethylamine and tripropylamine radical cations generated in AlPO4-5 by ionizing radiation: an EPR and MO study. PCCP 3:1611–1616

    Article  CAS  Google Scholar 

  146. Liu W, Shiotani M, Michalik J, Lund A (2001) Structure and dynamics of triethylamine and tripropylamine radical cations generated in AlPO4-5 by ionizing radiation: an EPR and MO study. PCCP 3:3532–3535

    Article  CAS  Google Scholar 

  147. Brustolon M, Cassol T, Micheletti L, Segre U (1986) Methyl dynamics studied by ENDOR spectroscopy - a new method. Mol Phys 57:1005–1014

    Article  CAS  Google Scholar 

  148. Brustolon M, Cassol T, Micheletti L, Sagre U (1987) ENDOR studies of methyl dynamics in molecular-crystals. Mol Phys 61:249–255

    Article  CAS  Google Scholar 

  149. Brustolon M, Maniero AL, Sagre U (1988) An ENDOR study of the slow intramolecular motion in the CH2COO- radical. Mol Phys 65:447–453

    Article  CAS  Google Scholar 

  150. Brustolon M, Sagre U (1994) Structure and dynamics of radicals in solids by EPR and ENDOR spectroscopies. J Chim Phys Chim Biol 91:1820–1829

    CAS  Google Scholar 

  151. Bonon F, Brustolon M, Maniero AL, Segre U (1992) Hindered motions in a ketone-urea inclusion compound. An ESR and ENDOR study. Appl Magn Reson 3:779–795

    CAS  Google Scholar 

  152. Salih NA, Eid OI, Benetis NP, Lindgren M, Lund A, Sagstuen E (1996) Reversible conformation change of free radicals in X-irradiated glutarimide single crystals studied by ENDOR. Chem Phys 212:409–419

    Article  CAS  Google Scholar 

  153. Eid OI (1999) Glutarimide, sodium hydrogen oxalate single crystals: an ESR/ENDOR study. Dissertation, University of Khartoum

    Google Scholar 

  154. Likhtenshtein GI (1993) Biophysical labelling methods in molecular biology. Cambridge University Press, New York

    Book  Google Scholar 

  155. Hubbell WL, Gross A, Langen R, Lietzow MA (1998) Recent advances in site-directed spin labeling of proteins. Curr Opin Struct Biol 8:649–656

    Article  CAS  Google Scholar 

  156. Li H (1998) Bonding and diffusion of molecules in zeolites by ESR and ENDOR. Dissertation, Linköping University

    Google Scholar 

  157. Li H, Yahiro H, Shiotani M, Lund A (1998) SER Spectrum: A novel information imaging to characterize molecular dynamics of NO2 on Na − mordenite. J Phys Chem B 102:5641–5647

    Article  CAS  Google Scholar 

  158. Yahiro H, Nagata M, Shiotani M, Lindgren M, Li H, Lund A (1997) Motional dynamics of NO2 adsorbed on cation-exchanged mordenites. Nukleonika 42:557–563

    CAS  Google Scholar 

  159. Biglino D, Li H, Erickson R, Lund A, Yahiro H, Shiotani M (1999) EPR and ENDOR studies of NOx and Cu2+ in zeolites: bonding and diffusion. PCCP 1:2887–2896

    Article  CAS  Google Scholar 

  160. Yahiro H, Shiotani M, Freed JH, Lindgren M, Lund A (1995) ESR studies of nitrogen oxides adsorbed on zeolite catalysts: analysis of motional dynamics. Study Surf Sci Catal 94:673–680

    Article  CAS  Google Scholar 

  161. Wadsworth H (ed) (1990) Handbook of statistical methods for engineers and scientists. McGraw-Hill, New York

    Google Scholar 

  162. Barnes J, Bernhard W (1995) The distribution of electron trapping in DNA - one-electron-reduced oligodeoxynucleotides of adenine and thymine. Radiat Res 143:85–92

    Article  CAS  Google Scholar 

  163. Kasai PH, Bishop RJ (1976) ESR studies of zeolite chemistry and catalysis. In: Rabo JA (ed) ACS monograph, vol 171. American Chemical Society, Washington, DC, pp 350–391

    Google Scholar 

  164. Yahiro H, Lund A, Aasa R, Benetis NP, Shiotani M (2000) Association forms of NO in sodium ion-exchanged A-type zeolite: Temperature-dependent Q-Band EPR spectra. J Phys Chem A 104:7950–7956

    Article  CAS  Google Scholar 

  165. Shimada S, Hori Y, Kashiwabara H (1977) Free radicals trapped in polyethylene matrix. 2. Decay in single crystals and diffusion. Polymer 18:25–31

    Article  CAS  Google Scholar 

  166. Plonka A (2001) Dispersive kinetics. Springer, Dordrecht

    Google Scholar 

  167. (a) Kinell PO, Lund A, Vanngard T (1964) Electron spin resonance study of γ-irradiated solid dextran. Arkiv Kemi 23:193–203; (b) Lund A, Nilsson G, Samskog PO (1986) Structure and reactions of reduction products in crystalline and polymeric materials by combining pulse radiolysis and ESR. Radiat Phys Chem 27:111–121

    Google Scholar 

  168. Heinzer J (1972) EXREXN: simulation of exchange-broadened isotropic ESR spectra. QCPE 11:209

    Google Scholar 

  169. Budil DE, Lee S, Saxena S, Freed JH (1996) Nonlinear least-squares analysis of slow-motional EPR spectra in one and two dimensions using a modified Levenberg-Marquardt algorithm. J Magn Reson A 120:155–189

    Article  CAS  Google Scholar 

  170. Earle KA, Budil DE (2006) Calculating slow-motion ESR spectra of spin-labeled polymers. In: Schlick S (ed) Advanced ESR methods in polymer research. Wiley, Hoboken

    Google Scholar 

  171. Fouse GW, Bernhard WA (1978) Analysis of error in eigenvalues and eigenvectors determined from EPR data. J Magn Reson 32:191–198

    CAS  Google Scholar 

  172. Mahgoub AS, Lund A, Lindgren M (1994) ENDOR study of 133Cs hyperfine couplings with SO -3 radicals in x-irradiated piezoelectric Cs2S2O6 single crystals. J Mater Chem 4:223–227

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Lund .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1.1 Single Crystal Analysis by the Original Schonland Method

The Schon_fit program in Table 1.1 is based on the original Schonland method as a simplified replacement for software in obsolete code referred to in our previous work [49]. The variation of the g-factor in a crystal plane was analyzed by a least squares fit to the experimental data using an equation of the type (1.4), by which three tensor elements with estimated uncertainties were obtained. Measurements in three mutually orthogonal crystal planes were employed to obtain the complete tensor. The principal values were computed with uncertainties estimated by the relation (1.55) originally given in different notation in [28]. The uncertainties (1.56) of the principal directions considered in [28, 46] were not computed, however. We refer to the literature [28, 46, 170] for procedures to obtain the statistical uncertainties from the propagating errors.

The variation of the hyperfine couplings in EPR measurements can be analyzed in the same manner as for the g-factor. The influence of the nuclear Zeeman term and of possible g-anisotropy was not taken into account in the software, however. Analysis of single crystal ENDOR data to obtain hfc-tensors can be made assuming that the measurements were obtained at or adjusted to a fixed magnetic field. Procedures for the adjustment, see e.g. [171], were not implemented. With these simplifications the program could be compactly written (ca 50 lines of Matlab code).

Axial symmetry constraints, commonly employed in the analysis of defects in crystals of high symmetry [56], can be taken into account by applying (1.49) below. The number of parameters can then be reduced, and measurements in three crystal planes are not always required as schematically illustrated in Fig. 1.13 for the 33S hfc of the \( {{\dot{S}}}{{\text{O}}_3}^{ - } \) radical in an X-irradiated K2S2O6 crystal.

Fig. 1.13
figure 13

Experimental (o) and fitted variations of a2 (a =33S hyperfine coupling) for a \( {{\dot{S}}}{{\text{O}}_3}^{ - } \) radical in the ac plane of K2S2O6, X-irradiated at room temperature. The values A|| = 138.9 G, A = 113.0 G were obtained from an analysis of Q-band EPR measurements (Data provided by Prof. E. Sagstuen) by assuming axial symmetry about the hexagonal crystal axis <c>

1.1.1.1 Axial Symmetry

An axially symmetric g- or hfc-tensor is commonly specified by the principal values T , T and the direction of the symmetry axis. The tensor elements in an arbitrary system (x, y, z) are then given by (1.47):

$$ {T_{\textit{ij}}} = {\delta_{\textit{ij}}}{T_{ \bot }} + \left( {{T_{\parallel }} - {T_{ \bot }}} \right){e_i}{e_j} $$
(1.47)

with i, j = x, y, z.

The coupling parameters (T , T ) and the polar angles (θ, ϕ) for the unit vector \( {\text{e}} = \left( {\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta } \right) \) along the symmetry axis completely determine the tensor. An alternative specification, obtained by eliminating the direction cosines of the symmetry axis in (1.47) is based on (1.48).

$$ \left( {{T_{\textit{ii}}} - {T_{ \bot }}} \right)\left( {{T_{\textit{jj}}} - T_{\bot}} \right) = T_{\textit{ij}}^2 $$
(1.48)

The first alternative might be suitable for a least squares fitting to the data by a non-linear procedure, while the second can be used with the Schonland method. Assume for instance that the tensor components T xx , T yy and T xy had been obtained from a least squares fit to the data in the xy-plane, in which case equation (1.49) applies:

$$ {T_{ \bot }} = \frac{{{T_{{xx}}} + {T_{{yy}}}}}{2}\pm \sqrt {{{{\left( {\frac{{{T_{{xx}}} - {T_{{yy}}}}}{2}} \right)}^2} + T_{{xy}}^2}} $$
(1.49)

The + and – signs correspond to T<T and T≥T, respectively. An additional measurement along the z axis to obtain T zz is required to calculate T  = trace(T) – 2T . The sign ambiguity in (1.49) would be resolved by measurements in two crystal planes, both expected to show the same maximum or minimum g-value or hyperfine splitting associated with T ⊥. Expressions applicable to the yz and zx planes are obtained by cyclic permutations of the indices in Eq. (1.49).

1.1.1.2 Propagation of Errors

The probable errors in the determination of the principal values and the directions of the principal axes are usually estimated from the uncertainties of the tensor elements [28, 46, 170]. The propagation of errors derived by a first order perturbation method is reproduced below in matrix notation.

The principal values t q and principal vectors c q are obtained from the eigenvalue equation:

$$ {\mathbf{T}}{{\mathbf{c}}_q} = {t_q}{{\mathbf{c}}_q} $$
(1.50)

Errors in the elements of the tensor T give rise to corresponding uncertainties in t q and c q.

$$ \left( {{\mathbf{T}} + \Delta {\mathbf{T}}} \right)\left( {{{\mathbf{c}}_q} + \Delta {{\mathbf{c}}_q}} \right) = \left( {{t_q} + \Delta {t_q}} \right)\left( {{{\mathbf{c}}_q} + \Delta {{\mathbf{c}}_q}} \right) $$
(1.51)

The errors Δc q are expressed as a linear combination (1.52) of the principal vectors.

$$ \Delta {{\mathbf{c}}_q} = \sum\limits_{{s \ne q}} {{d_s}} {{\mathbf{c}}_s} $$
(1.52)

Equation (1.53) is obtained by combining (1.50), (1.51) and (1.52), neglecting 2nd order terms:

$$ \sum\limits_{{r \ne q}} {{d_r}} {t_r}{{\mathbf{c}}_r} + \Delta {\mathbf{T}}{{\mathbf{c}}_q} = \Delta {t_q}{{\mathbf{c}}_q} + {t_q}\sum\limits_{{r \ne q}} {{d_r}} {{\mathbf{c}}_r} $$
(1.53)

Equation (1.54) is derived after multiplication with c s, taking into account that the principal vectors are orthonormal.

$$ {d_s}{t_s} + {{\mathbf{c}}_s}\Delta {\mathbf{T}}{{\mathbf{c}}_q} = \Delta {t_q}{\delta_{{sq}}} + {t_q}{d_s} $$
(1.54)

The errors are accordingly estimated by the expressions (1.55) and (1.56):

$$ \Delta {t_q} = {\mathbf{c}}{}_q{\mathbf{\Delta T}}{{\mathbf{c}}_q} $$
(1.55)
$$ \Delta {{\mathbf{c}}_q} = \sum\limits_{{s \ne q}} {\frac{{{\mathbf{c}}{}_s\Delta {\mathbf{T}}{{\mathbf{c}}_q}}}{{{t_q} - {t_s}}}} {{\mathbf{c}}_s} $$
(1.56)

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lund, A., Liu, W. (2013). Continuous Wave EPR of Radicals in Solids. In: Lund, A., Shiotani, M. (eds) EPR of Free Radicals in Solids I. Progress in Theoretical Chemistry and Physics, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4893-4_1

Download citation

Publish with us

Policies and ethics