Skip to main content

Observations and Ray Tracing of Gravity Waves: Implications for Global Modeling

  • Chapter
Climate and Weather of the Sun-Earth System (CAWSES)

Abstract

Vertical coupling by atmospheric waves is essential for the wind and temperature structure of the middle atmosphere. In particular, momentum carried by atmospheric gravity waves (GWs) governs the global circulation in the mesosphere and is for instance the reason for the cold summer mesopause. However, the small horizontal scales of GWs (tens to thousands of km) are challenging both global modeling and observations from satellite. Further, due to the small scales involved, there is a severe lack of understanding about GWs themselves, as well as dynamical phenomena involving GWs. Until recently, global observations of GWs were sparse and little was known about the global distribution of GWs, as well as their seasonal variation. Therefore, several projects in the priority program Climate And Weather of the Sun-Earth System (CAWSES) of the Deutsche Forschungsgemeinschaft (DFG) have addressed a number of the most pressing problems. Global distributions of GW activity and momentum fluxes have been derived from observations with number of satellite instruments, resulting in the first multi-year global data sets of GW parameters, covering time scales from seasonal variations up to the duration of almost a full 11-year solar cycle. In addition, seasonal and tidal variations of sporadic E layers in the ionosphere were studied in Global Positioning System (GPS) radio occultation data. Satellite observations of GWs and sporadic E layers were complemented by ground-based observations (radar and low-frequency (LF) drift measurements). All these observations, as well as accompanying modeling activities provided important constraints for GW parameterizations. Further activities addressed important aspects of GW propagation usually neglected in global modeling: GW ray tracing studies revealed the importance of non-vertical propagation of GWs and first steps were undertaken to develop an improved GW parameterization based on GW ray tracing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alexander, M. J., Gille, J. C., Cavanaugh, C., Coffey, M., Craig, C., Eden, T., Francis, G., Halvorson, C., Hannigan, J., Khosravi, R., Kinnison, D., Lee, H., Massie, S., Nardi, B., Barnett, J. J., Hepplewhite, C., Lambert, A., & Dean, V. (2008). Global estimates of gravity wave momentum flux from High Resolution Dynamics Limb Sounder observations. Journal of Geophysical Research, 113, D15S18. doi:10.1029/2007JD008807.

    Article  Google Scholar 

  • Alexander, M. J., Geller, M., McLandress, C., Polavarapu, S., Preusse, P., Sassi, F., Sato, K., Eckermann, S., Ern, M., Hertzog, A., Kawatani, Y., Pulido, M., Shaw, T. A., Sigmond, M., Vincent, R., & Watanabe, S. (2010). Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Quarterly Journal of the Royal Meteorological Society, 136, 1103–1124. doi:10.1002/qj.637.

    Google Scholar 

  • Arras, C., Wickert, J., Beyerle, G., Heise, S., Schmidt, T., & Jacobi, C. (2008). A global climatology of ionospheric irregularities derived from GPS radio occultation. Geophysical Research Letters, 35, L14809. doi:10.1029/2008GL034158.

    Article  Google Scholar 

  • Arras, C., Jacobi, C., & Wickert, J. (2009). Semidiurnal tidal signature in sporadic E occurrence rates derived from GPS radio occultation measurements at higher midlatitudes. Annales Geophysicae, 27, 2555–2563.

    Article  Google Scholar 

  • Baldwin, M. P., & Dunkerton, T. J. (2001). Stratospheric harbingers of anomalous weather regimes. Science, 294, 581–584.

    Article  Google Scholar 

  • Charron, M., & Manzini, E. (2002). Gravity waves from fronts: parameterization and middle atmosphere response in a general circulation model. Journal of the Atmospheric Sciences, 59, 923–941.

    Article  Google Scholar 

  • de la Torre, A., Schmidt, T., & Wickert, J. (2006a). A global analysis of wave potential energy in the lower stratosphere derived from 5 years of GPS radio occultation data with CHAMP. Geophysical Research Letters, 33, L24809. doi:10.1029/2006GL027696.

    Article  Google Scholar 

  • de la Torre, A., Alexander, P., Llamedo, P., Menéndez, C., Schmidt, T., & Wickert, J. (2006b). Gravity waves above the Andes detected from GPS radio occultation temperature profiles: jet mechanism? Geophysical Research Letters, 33, L24810. doi:10.1029/2006GL027343.

    Article  Google Scholar 

  • de la Torre, A., Llamedo, P., Alexander, P., Schmidt, T., & Wickert, J. (2010). Estimated errors in a global gravity wave climatology from GPS radio occultation temperature profiles. Advances in Space Research, 46, 174–179. doi:10.1016/j.asr.2010.02.033.

    Article  Google Scholar 

  • Dunkerton, T. J. (1997). The role of gravity waves in the quasi-biennial oscillation. Journal of Geophysical Research, 102, 26053–26076.

    Article  Google Scholar 

  • Ern, M., & Preusse, P. (2009a). Wave fluxes of equatorial Kelvin waves and QBO zonal wind forcing derived from SABER and ECMWF temperature space-time spectra. Atmospheric Chemistry and Physics, 9, 3957–3986. doi:10.5194/acp-9-3957-2009.

    Article  Google Scholar 

  • Ern, M., & Preusse, P. (2009b). Quantification of the contribution of equatorial Kelvin waves to the QBO wind reversal in the stratosphere. Geophysical Research Letters, 36, L21801. doi:10.1029/2009GL040493.

    Article  Google Scholar 

  • Ern, M., Preusse, P., Alexander, M. J., & Warner, C. D. (2004). Absolute values of gravity wave momentum flux derived from satellite data. Journal of Geophysical Research, 109, D20103. doi:10.1029/2004JD004752.

    Article  Google Scholar 

  • Ern, M., Preusse, P., & Warner, C. D. (2005). A comparison between CRISTA satellite data and Warner and McIntyre gravity wave parameterization scheme: Horizontal and vertical wavelength filtering of gravity wave momentum flux. Advances in Space Research, 35, 2017–2023. doi:10.1016/j.asr.2005.04.109.

    Article  Google Scholar 

  • Ern, M., Preusse, P., & Warner, C. D. (2006). Some experimental constraints for spectral parameters used in the Warner and McIntyre gravity wave parameterization scheme. Atmospheric Chemistry and Physics, 6, 4361–4381. doi:10.5194/acp-6-4361-2006.

    Article  Google Scholar 

  • Ern, M., Preusse, P., Gille, J. C., Hepplewhite, C. L., Mlynczak, M. G., Russell III, J. M., & Riese, M. (2011). Implications for atmospheric dynamics derived from global observations of gravity wave momentum flux in stratosphere and mesosphere. Journal of Geophysical Research, 116, D19107. doi:10.1029/2011JD015821.

    Article  Google Scholar 

  • Fleming, E. L., Chandra, S., Barnett, J. J., & Corney, M. (1990). Zonal mean temperature, pressure, zonal wind and geopotential height as functions of latitude. Advances in Space Research, 12, 1211–1259.

    Google Scholar 

  • Fomichev, V. I., Ward, W. E., Beagley, S. R., McLandress, C., McConnell, J. C., McFarlane, N. A., & Shepherd, T. G. (2002). Extended Canadian Middle Atmosphere model: zonal-mean climatology and physical parameterizations. Journal of Geophysical Research, 107, 4087. doi:10.1029/2001JD000479.

    Article  Google Scholar 

  • Fritts, D. C., & Alexander, M. J. (2003). Gravity wave dynamics and effects in the middle atmosphere. Reviews of Geophysics, 41, 1003. doi:10.1029/2001RG000106.

    Article  Google Scholar 

  • Fröhlich, K., Ern, M., Jacobi, C., & Preusse, P. (2006). Implementation of the Warner-McIntyre scheme of gravity wave parametrization into COMMA-LIM, Part I: code transfer. Reports of the Institute of Meteorology, University of Leipzig, 37, 11–16.

    Google Scholar 

  • Fröhlich, K., Schmidt, T., Ern, M., Preusse, P., de la Torre, A., Wickert, J., & Jacobi, C. (2007). The global distribution of gravity wave energy in the lower stratosphere derived from GPS data and gravity wave modelling: Attempt and challenges. Journal of Atmospheric and Solar-Terrestrial Physics, 69, 2238–2248. doi:10.1016/j.jastp.2007.07.005.

    Article  Google Scholar 

  • Garcia, R. R., & Randel, W. J. (2008). Acceleration of the Brewer Dobson circulation due to increases in greenhouse gases. Journal of the Atmospheric Sciences, 65, 2731–2739.

    Article  Google Scholar 

  • Garcia, R. R., Marsh, D. E., Kinnison, D. E., Boville, B. A., & Sassi, F. (2007). Simulation of secular trends in the middle atmosphere, 1950–2003. Journal of Geophysical Research, 112, D09301. doi:10.1029/2006JD007485.

    Article  Google Scholar 

  • Gavrilov, N. M., Manson, A. H., & Meek, C. E. (1995). Climatological monthly characteristics of middle atmosphere gravity waves (10 min–10 h) during 1979–1993 at Saskatoon. Annales Geophysicae, 13, 285–295.

    Google Scholar 

  • Gavrilov, N. M., Fukao, S., Nakamura, T., Jacobi, C., Kürschner, D., Manson, A. H., & Meek, C. E. (2002). Comparative study of interannual changes of the mean winds and gravity wave activity in the middle atmosphere over Japan, Central Europe and Canada. Journal of Atmospheric and Solar-Terrestrial Physics, 64, 1003–1010.

    Article  Google Scholar 

  • Gavrilov, N. M., Riggin, D. M., & Fritts, D. C. (2004). Interannual variations of the mean wind and gravity wave variances in the middle atmosphere over Hawaii. Journal of Atmospheric and Solar-Terrestrial Physics, 66, 637–645.

    Article  Google Scholar 

  • Hines, C. O. (1997a). Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 1: basic formulation. Journal of Atmospheric and Solar-Terrestrial Physics, 59, 371–386.

    Article  Google Scholar 

  • Hines, C. O. (1997b). Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 2: broad and quasi monochromatic spectra and implementation. Journal of Atmospheric and Solar-Terrestrial Physics, 59, 387–400.

    Article  Google Scholar 

  • Hocke, K., & Tsuda, T. (2001). Gravity waves and ionospheric irregularities over tropical convection zones observed by GPS/MET radio occultation. Geophysical Research Letters, 28, 2815–2818.

    Article  Google Scholar 

  • Hoffmann, P., Becker, E., Singer, W., & Placke, M. (2010). Seasonal variation of mesospheric waves at northern middle and high latitudes. Journal of Atmospheric and Solar-Terrestrial Physics, 72, 1068–1079. doi:10.1016/j.jastp.2010.07.002.

    Article  Google Scholar 

  • Holton, J. R. (1982). The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere. Journal of the Atmospheric Sciences, 39, 791–799.

    Article  Google Scholar 

  • Holton, J. R. (1983). The influence of gravity wave breaking on the general circulation of the middle atmosphere. Journal of the Atmospheric Sciences, 40, 2497–2507.

    Article  Google Scholar 

  • Holton, J. R., & Lindzen, R. S. (1972). An updated theory for the quasi-biennial cycle of the tropical stratosphere. Journal of the Atmospheric Sciences, 29, 1076–1080.

    Article  Google Scholar 

  • Holton, J. R., & Tan, H.-C. (1980). The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. Journal of the Atmospheric Sciences, 37, 2200–2208.

    Article  Google Scholar 

  • Jacobi, C., Gavrilov, N. M., Kürschner, D., & Fröhlich, K. (2006). Gravity wave climatology and trends in the mesosphere/lower thermosphere region deduced from low-frequency drift measurements 1984–2003 (52.1°N, 13.2°E). Journal of Atmospheric and Solar-Terrestrial Physics, 68, 1913–1923. doi:10.1016/j.jastp.2005.12.007.

    Article  Google Scholar 

  • Jiang, J. H., Eckermann, S. D., Wu, D. L., & Ma, J. (2004a). A search for mountain waves in MLS stratospheric limb radiances from the winter northern hemisphere: Data analysis and global mountain wave modeling. Journal of Geophysical Research, 109, D03107. doi:10.1029/2003JD003974.

    Article  Google Scholar 

  • Jiang, J. H., Wang, B., Goya, K., Hocke, K., Eckermann, S. D., Ma, J., Wu, D. L., & Read, W. G. (2004b). Geographical distribution and interseasonal variability of tropical deep convection: UARS MLS observations and analyses. Journal of Geophysical Research, 109, D03111. doi:10.1029/2003JD003756.

    Article  Google Scholar 

  • Kodera, K., Matthes, K., Shibata, K., Langematz, U., & Kuroda, Y. (2003). Solar impact on the lower mesospheric subtropical jet: a comparative study with general circulation model simulations. Geophysical Research Letters, 30, 1315. doi:10.1029/2002GL016124.

    Article  Google Scholar 

  • Krebsbach, M., & Preusse, P. (2007). Spectral analysis of gravity wave activity in SABER temperature data. Geophysical Research Letters, 34, L03814. doi:10.1029/2006GL028040.

    Article  Google Scholar 

  • Li, F., Austin, J., & Wilson, J. (2008). The strength of the Brewer Dobson circulation in a changing climate: coupled chemistry climate model simulations. Journal of Climate, 21, 40–57. doi:10.1175/2007JCLI1663.1.

    Article  Google Scholar 

  • Lindzen, R. S. (1981). Turbulence and stress owing to gravity wave and tidal breakdown. Journal of Geophysical Research, 86, 9707–9714.

    Article  Google Scholar 

  • Lindzen, R. S., & Holton, J. R. (1968). A theory of the quasi-biennial oscillation. Journal of the Atmospheric Sciences, 25, 1095–1107.

    Article  Google Scholar 

  • Lübken, F.-J. (1997). Seasonal variation of turbulent energy dissipation rates at high latitudes as determined by in situ measurements of neutral density fluctuations. Journal of Geophysical Research, 102, 13441–13456.

    Article  Google Scholar 

  • Marshall, A. G., & Scaife, A. A. (2009). Impact of the QBO on surface winter climate. Journal of Geophysical Research, 114, D18110. doi:10.1029/2009JD011737.

    Article  Google Scholar 

  • McLandress, C., & Scinocca, J. F. (2005). The GCM response to current parameterizations of nonorographic gravity wave drag. Journal of the Atmospheric Sciences, 62, 2394–2413.

    Article  Google Scholar 

  • McLandress, C., & Shepherd, T. G. (2009). Simulated anthropogenic changes in the Brewer Dobson circulation, including its extension to high latitudes. Journal of Climate, 22, 1516–1540. doi:10.1175/2008JCLI2679.1.

    Article  Google Scholar 

  • Oberheide, J., Forbes, J. M., Häusler, K., Wu, Q., & Bruinsma, S. L. (2009). Tropospheric tides from 80 to 400 km: propagation, interannual variability, and solar cycle effects. Journal of Geophysical Research, 114, D00I05. doi:10.1029/2009JD012388.

    Article  Google Scholar 

  • Orr, A., Bechtold, P., Scinocca, J. F., Ern, M., & Janiskova, M. (2010). Improved middle atmosphere climate and forecasts in the ECMWF model through a non-orographic gravity wave drag parametrization. Journal of Climate, 23, 5905–5926. doi:10.1175/2010JCLI3490.1.

    Article  Google Scholar 

  • Placke, M., Stober, G., & Jacobi, C. (2011). Gravity wave momentum fluxes in the MLT—Part I: seasonal variation at Collm (51.3°N, 13.0°E). Journal of Atmospheric and Solar-Terrestrial Physics, 73, 904–910. doi:10.1016/j.jastp.2010.07.012.

    Article  Google Scholar 

  • Pogoreltsev, A. I., Vlasov, A. A., Fröhlich, K., & Jacobi, C. (2007). Planetary waves in coupling the lower and upper atmosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 69, 2083–2101. doi:10.1016/j.jastp.2007.05.014.

    Article  Google Scholar 

  • Powell, A. M., & Xu, J. (2011). Possible solar forcing of interannual and decadal stratospheric planetary wave variability in the northern hemisphere: an observational study. Journal of Atmospheric and Solar-Terrestrial Physics, 73, 825–838. doi:10.1016/j.jastp.2011.02.001.

    Article  Google Scholar 

  • Preusse, P., Ern, M., Eckermann, S. D., Warner, C. D., Picard, R. H., Knieling, P., Krebsbach, M., Russell III, J. M., Mlynczak, M. G., Mertens, C. J., & Riese, M. (2006). Tropopause to mesopause gravity waves in August: measurement and modeling. Journal of Atmospheric and Solar-Terrestrial Physics, 68, 1730–1751. doi:10.1016/j.jastp.2005.10.019.

    Article  Google Scholar 

  • Preusse, P., Schroeder, S., Hoffmann, L., Ern, M., Friedl-Vallon, F., Oelhaf, H., Fischer, H., & Riese, M. (2009a). New perspectives on gravity wave remote sensing by spaceborne infrared limb imaging. Atmospheric Measurement Techniques, 2, 299–311.

    Article  Google Scholar 

  • Preusse, P., Eckermann, S. D., Ern, M., Oberheide, J., Picard, R. H., Roble, R. G., Riese, M., Russell III, J. M., & Mlynczak, M. G. (2009b). Global ray tracing simulations of the SABER gravity wave climatology. Journal of Geophysical Research, 114, D08126. doi:10.1029/2008JD011214.

    Article  Google Scholar 

  • Rauthe, M., Gerding, M., Höffner, J., & Lübken, F.-J. (2006). Lidar temperature measurements of gravity waves over Kühlungsborn (54°N) from 1 to 105 km: a winter-summer comparison. Journal of Geophysical Research, 111, D24108. doi:10.1029/2006JD007354.

    Article  Google Scholar 

  • Richter, J. H., Sassi, F., & Garcia, R. R. (2010). Toward a physically based gravity wave source parameterization in a general circulation model. Journal of the Atmospheric Sciences, 67, 136–156.

    Article  Google Scholar 

  • Riese, M., Spang, R., Preusse, P., Ern, M., Jarisch, M., Offermann, D., & Grossmann, K. U. (1999). Cryogenic infrared spectrometers and telescopes for the atmosphere (CRISTA) data processing and atmospheric temperature and trace gas retrieval. Journal of Geophysical Research, 104, 16349–16367.

    Article  Google Scholar 

  • Schmidt, T., Beyerle, G., Heise, S., Wickert, J., & Rothacher, M. (2006). A climatology of multiple tropopauses derived from GPS radio occultations with CHAMP and SAC-C. Geophysical Research Letters, 33, L04808. doi:10.1029/2005GL024600.

    Article  Google Scholar 

  • Schmidt, T., de la Torre, A., & Wickert, J. (2008). Global gravity wave activity in the tropopause region from CHAMP radio occultation data. Geophysical Research Letters, 35, L16807. doi:10.1029/2008GL034986.

    Article  Google Scholar 

  • Song, I.-S., & Chun, H.-Y. (2008). A Lagrangian spectral parameterization of gravity wave drag induced by Cumulus convection. Journal of the Atmospheric Sciences, 65, 1204–1224.

    Article  Google Scholar 

  • Stober, G., Jacobi, C., Fröhlich, K., & Oberheide, J. (2008). Meteor radar temperatures over Collm (51.3°N, 13°E). Advances in Space Research, 42, 1253–1258. doi:10.1016/j.asr.2007.10.018.

    Article  Google Scholar 

  • Warner, C. D., & McIntyre, M. E. (2001). An ultrasimple spectral parameterization for nonorographic gravity waves. Journal of the Atmospheric Sciences, 58, 1837–1857.

    Article  Google Scholar 

  • Wickert, J., Schmidt, T., Beyerle, G., Heise, S., & Reigber, C. (2006). Global atmospheric sounding with GPS radio occultation aboard CHAMP. In J. Flury, R. Rummel, C. Reigber, M. Rothacher, G. Boedecker & U. Schreiber (Eds.), Observation of the Earth system from space (pp. 55–67). Berlin: Springer.

    Chapter  Google Scholar 

  • Wickert, J., Michalak, G., Schmidt, T., Beyerle, G., Cheng, C.-Z., Healy, S. B., Heise, S., Huang, C.-Y., Jakowski, N., Köhler, W., Mayer, C., Offiler, D., Ozawa, E., Pavelyev, A. G., Rothacher, M., Tapley, B., & Arras, C. (2009). GPS radio occultation: results from CHAMP, GRACE and FORMOSAT-3/COSMIC. Terrestrial Atmospheric and Oceanic Sciences, 20, 35–50. doi:10.3319/TAO.2007.12.26.01(F3C).

    Article  Google Scholar 

  • Wright, C. J., Osprey, S. M., Barnett, J. J., Gray, L. J., & Gille, J. C. (2010). High resolution dynamics limb sounder measurements of gravity wave activity in the 2006 Arctic stratosphere. Journal of Geophysical Research, 115, D02105. doi:10.1029/2009JD011858.

    Article  Google Scholar 

Download references

Acknowledgements

Very helpful comments of two anonymous reviewers are gratefully acknowledged. The projects GW-CODE/FZJ, GW-CODE/GFZ, GW-CODE/LIM, GRAPES, and GW-EXCITES were funded by Deutsche Forschungsgemeinschaft (DFG) grants no. ER474/1-1, WI2634/2-1, JA836/21-1, PR919/2-1, and ER474/2-1 within the DFG priority program CAWSES (SPP1176).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Ern .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ern, M. et al. (2013). Observations and Ray Tracing of Gravity Waves: Implications for Global Modeling. In: Lübken, FJ. (eds) Climate and Weather of the Sun-Earth System (CAWSES). Springer Atmospheric Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4348-9_21

Download citation

Publish with us

Policies and ethics