Skip to main content

The Fossil Record of Cyanobacteria

  • Chapter
  • First Online:
Ecology of Cyanobacteria II

Summary

Fossil evidence of cyanobacteria, represented in the geological record by microbially laminated stromatolites, cyanobacterial and cyanobacterium-like microscopic fossils, and carbon isotopic data consistent with the presence of Rubisco-mediated CO2-fixation, extends back to ∼3,500 million years ago. The most abundant and best-documented fossil cyanobacteria, known from thousands of specimens preserved in several hundred geological units, belong to five taxonomic families: the Oscillatoriaceae, Nostocaceae, Chroococcaceae, Entophysalidaceae and Pleurocapsaceae. As documented by the essentially identical morphologies, life cycles, and ecologic settings of such fossils and their modern counterparts, members of these families have exhibited extreme evolutionary stasis over enormous segments of geological time. Because of the incompleteness of the fossil record, however, such data do not resolve the time of origin of O2-producing cyanobacteria from their anoxygenic, bacterial, evolutionary precursors. Though it is well established that Earth’s ecosystem has included autotrophs since its very early stages, available data indicate only that O2-producing photoautotrophic cyanobacteria originated earlier than the Great Oxidation Event at ∼2,450 million years ago; that such microbes were evidently extant by ∼2,700 million years ago; and that the origin of oxygenic photosynthesis may date from as early as, or even earlier than, 3,500 million years ago.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BIF:

banded iron-formation

CLSM:

confocal laser scanning microscopy

GOE:

Grand Oxidation Event

Ma:

million years

NMR:

solid-state 13C nuclear magnetic resonance

RIP:

Raman Index of Preservation

Rubisco:

ribulose bisphospate carboxylase/oxygenase

XANES:

X-ray absorption near-edge spectroscopy

References

  • Allwood AC, Walter MR, Kamber BS, Marshall CP, Burch IW (2006) Stromatolite reef from the Early Archaean era of Australia. Nature 441:714–718

    Article  PubMed  CAS  Google Scholar 

  • Altermann W, Schopf JW (1995) Microfossils from the Neoarchean Campbell Group, Griqualand West Sequence of the Transvaal Supergroup, and their paleoenvironmental and evolutionary implications. Precambrian Res 75:65–90

    Article  PubMed  CAS  Google Scholar 

  • Barghoorn ES, Schopf JW (1965) Microorganisms from the late Precambrian of central Australia. Science 150:337–339

    Article  PubMed  CAS  Google Scholar 

  • Barghoorn ES, Tyler SA (1965) Microorganisms from the Gunflint chert. Science 147:563–577

    Article  PubMed  CAS  Google Scholar 

  • Blankenship RE (1992) Origin and early evolution of photosynthesis. Photosynth Res 33:91–111

    Article  PubMed  CAS  Google Scholar 

  • Blankenship RE, Hartman H (1998) The origin and evolution of oxygenic photosynthesis. Trends Biochem Sci 23:94–97

    Article  PubMed  CAS  Google Scholar 

  • Bloeser B (1985) Melanocyrillium, a new genus of structurally complex late Proterozoic microfossils from the Kwagunt Formation (Chuar Group), Grand Canyon, Arizona. J Paleontol 59:741–765

    Google Scholar 

  • Bloeser B, Schopf JW, Horodyski RJ, Breed WJ (1977) Chitinozoans from the late Precambrian Chuar Group of the Grand Canyon, Arizona. Science 195:676–679

    Article  PubMed  CAS  Google Scholar 

  • Brasier MD, Green OR, Jephcoat AP, Kleppe AK, VanKranendonk AJ, Lindsay JF, Steele A, Grassineau NV (2002) Questioning the evidence of Earth’s oldest fossils. Nature 416:76–81

    Article  PubMed  Google Scholar 

  • Brocks JJ, Logan GA, Buick R, Summons RE (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285:1033–1036

    Article  PubMed  CAS  Google Scholar 

  • Butterfield NJ (2009) Modes of pre-Ediacaran multicellularity. Precambrian Res 173:201–211

    Article  CAS  Google Scholar 

  • Canfield DE (2005) The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu Rev Earth Planet Sci 33:1–36

    Article  CAS  Google Scholar 

  • Chen JY, Schopf JW, Bottjer DJ, Zhang C-Y, Kudryavtsev AB, Tripathi AB, Wang X-Q, Yang Y-H, Gao X, Yang Y (2007) Raman spectra of a ctenophore embryo from southwestern Shaanxi, China. Proc Natl Acad Sci USA 104:6289–6292

    Article  PubMed  CAS  Google Scholar 

  • Cloud PE (1965) Significance of the Gunflint (Precambrian) microflora. Science 148:27–45

    Article  PubMed  Google Scholar 

  • Darwin CR (1859) On the origin of species by means of natural selection. John Murray, London, 490 pp

    Google Scholar 

  • DeGregorio BT, Sharp TG, Flynn GJ, Wirick S, Hervig RL (2009) Biogenic origin for Earth’s oldest putative fossils. Geology 37:631–634

    Article  CAS  Google Scholar 

  • Derenne S, Robert F, Skrzypczak-Bonduelle A, Gourier D, Binet L, Rouzaud J-N (2008) Molecular evidence for life in the 3.5 billion year old Warrawoona chert. Earth Planet Sci Lett 272:476–480

    Article  CAS  Google Scholar 

  • Drews G (1973) Fine structure and chemical composition of the cell envelopes. In: Carr NG, Whitton BA (eds) The biology of blue-green algae. Blackwell Scientific Publications/University of California Press, Oxford/Berkeley, pp 99–116, 676 pp

    Google Scholar 

  • Eigenbrode JL, Freeman KH, Summons RE (2008) Methylhopane biomarker hydrocarbons in Hamersley Province sediments provide evidence for Neoarchean aerobiosis. Earth Planet Sci Lett 273:323–331

    Article  CAS  Google Scholar 

  • Fairchild TR (1975) The geologic setting and paleobiology of a Late Precambrian stromatolitic microflora from South Australia. Dissertation, University of California, Los Angeles, 272 pp

    Google Scholar 

  • Farquhar J, Bao H, Thiemens M (2000) Atmospheric influence of Earth’s earliest sulfur cycle. Science 289:756–759

    Article  PubMed  CAS  Google Scholar 

  • Farquhar J, Peterson M, Johnson DT, Strauss H, Masterson A, Weichert U, Kaufman AJ (2007) Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulfur chemistry. Nature 449:706–709

    Article  PubMed  CAS  Google Scholar 

  • Frank H, Lefort M, Martin HH (1971) Elektronenoptische und chemische Untersuchungen an Zellwäden der Blaualgen, Phormidium unicinatum. Z Natur B 17:262–268

    Google Scholar 

  • Garrels RM, Mackenzie FT (1971) Evolution of sedimentary rocks. Norton, New York, 397 pp

    Google Scholar 

  • Giovannoni SJ, Turner S, Olsen GJ, Barns S, Lane DJ, Pace NR (1988) Evolutionary relationship among cyanobacteria and green chloroplasts. J Bacteriol 170:3584–3592

    PubMed  CAS  Google Scholar 

  • Golubić S, Hofmann HJ (1976) Comparison of Holocene and mid-Precambrian Entophysalidaceae (Cyanophyta) in stromatolitic mats: cell division and degradation. J Paleontol 50:1074–1082

    Google Scholar 

  • Golubić S, Sergeev VN, Knoll AH (1995) Mesoproterozoic Archaeoellipsoides: akinetes of heterocystous cyanobacteria. Lethaia 28:285–298

    Article  PubMed  Google Scholar 

  • Green JW, Knoll AH, Golubić S, Swett K (1987) Paleobiology of distinctive benthic microfossils from the Upper Proterozoic Limestone-Dolomite “Series,” central East Greenland. Am J Bot 74:928–940

    Article  PubMed  CAS  Google Scholar 

  • Green JW, Knoll AH, Swett K (1988) Microfossils from oolites and pisolites of the Upper Proterozoic Eleonore Bay Group, central East Greenland. J Paleontol 62:835–852

    PubMed  CAS  Google Scholar 

  • Grotzinger JP, Knoll AH (1999) Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annu Rev Earth Planet Sci 27:313–358

    Article  PubMed  CAS  Google Scholar 

  • Halfen LN, Castenholz RW (1971) Gliding motility in the blue-green alga, Oscillatoria princeps. J Phycol 7:133–145

    Google Scholar 

  • Hayes JM (1983) Geochemical evidence bearing on the origin of aerobiosis, a speculative hypothesis. In: Schopf JW (ed) Earth’s earliest biosphere, its origin and evolution. Princeton University Press, Princeton, pp 291–301, 543 pp

    Google Scholar 

  • Hayes JM, Kaplan IR, Wedeking KM (1983) Precambrian organic geochemistry, preservation of the record. In: Schopf JW (ed) Earth’s earliest biosphere, its origin and evolution. Princeton University Press, Princeton, pp 93–134, 543 pp

    Google Scholar 

  • Hayes JM, DesMarais DJ, Lambert IA, Strauss H, Summons RE (1992) Proterozoic biogeochemistry. In: Schopf JW, Klein C (eds) The Proterozoic biosphere, a multidisciplinary study. Cambridge University Press, New York, pp 81–134, 1348 pp

    Chapter  Google Scholar 

  • Herdman M, Janvier M, Rippka R, Stanier RY (1979a) Genome size of cyanobacteria. J Gen Microbiol 111:73–85

    Article  Google Scholar 

  • Herdman M, Janvier M, Waterbury JB, Rippka R, Stanier RY, Mandel M (1979b) Deoxyribonucleic acid base composition of cyanobacteria. J Gen Microbiol 111:63–71

    Article  CAS  Google Scholar 

  • Hoering TC (1967) The organic geochemistry of Precambrian rocks. In: Abelson PH (ed) Researches in geochemistry, vol 2. Wiley, New York, pp 87–111, 663 pp

    Google Scholar 

  • Hofmann HJ (1976) Precambrian microflora, Belcher Islands, Canada: significance and systematics. J Paleontol 50:1040–1073

    Google Scholar 

  • Hofmann HJ (2000) Archean stromatolites as microbial archives. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, Berlin/Heidelberg/New York, pp 315–327, 331 pp

    Google Scholar 

  • Hofmann HJ, Grey K, Hickman AH, Thorpe RI (1999) Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia. Geol Soc Am Bull 111:1256–1262

    Article  Google Scholar 

  • Holland HD (2002) Volcanic gases, black smokers, and the Great Oxidation Event. Geochim Cosmochim Acta 66:3811–3826

    Article  CAS  Google Scholar 

  • Horodyski RJ, Donaldson JA (1980) Microfossils from the Middle Proterozoic Dismal Lakes Group, Arctic Canada. Precambrian Res 11:125–159

    Article  Google Scholar 

  • House CH, Schopf JW, McKeegan KD, Coath CD, Harrison TM, Stetter KO (2000) Carbon isotopic composition of individual Precambrian microfossils. Geology 28:707–710

    Article  PubMed  CAS  Google Scholar 

  • House CH, Schopf JW, Stetter KO (2003) Carbon isotopic signatures of biochemistry: fractionation by archaeans and other thermophilic prokaryotes. Org Geochem 34:345–356

    Article  CAS  Google Scholar 

  • Igisu M, Ueno Y, Shimojima M, Nakashima S, Awramik SM, Ohta H, Maryuama S (2009) Micro-FTIR spectroscopic signatures of bacterial lipids in Proterozoic microfossils. Precambrian Res 173:19–26

    Article  CAS  Google Scholar 

  • Kidston R, Lang WH (1922) On Old Red Sandstone plants showing structure from the Rhynie chert bed, Aberdeenshire, part V. Trans R Soc Edinb 52:885–902

    Google Scholar 

  • Knoll AH, Barghoorn ES, Golubić S (1975) Palaeopleurocapsa wopfnerii gen. et sp nov., a late-Precambrian blue-green alga and its modern counterpart. Proc Natl Acad Sci USA 72:2488–2492

    Article  PubMed  CAS  Google Scholar 

  • Knoll AH, Golubić S, Green J, Swett K (1986) Organically preserved microbial endoliths from the late Proterozoic of East Greenland. Nature 321:856–857

    Article  PubMed  CAS  Google Scholar 

  • McKeegan KD, Kudryavtsev AB, Schopf JW (2007) Raman and ion microscopic imagery of graphite inclusions in apatite from older than 3830 Ma Akilia supracrustal rocks, west Greenland. Geology 35:591–594

    Article  Google Scholar 

  • Mojzsis S, Arrenhius G, McKeegan KD, Nutman AP, Friend CRL (1996) Evidence for life on Earth before 3,800 million years ago. Nature 384:55–59

    Article  PubMed  CAS  Google Scholar 

  • Oparin AI (1938) The origin of life. McMillian, New York, 270 pp

    Google Scholar 

  • Pankratz HS, Bowen CC (1963) Cytology of blue-green algae. I. The cells of Symploca muscorum. Am J Bot 50:387–399

    Article  Google Scholar 

  • Park R, Epstein S (1963) Carbon isotopic fractionation during photosynthesis. Geochim Cosmochim Acta 21:110–115

    Article  Google Scholar 

  • Porter SM, Knoll AH (2000) Testate amoebae in the Neoproterozoic Era: evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon. Paleobiology 26:360–385

    Article  Google Scholar 

  • Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–1104

    Article  PubMed  CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Article  Google Scholar 

  • Schopf JW (1968) Microflora of the bitter springs formation, late Precambrian, central Australia. J Paleontol 42:651–688

    Google Scholar 

  • Schopf JW (1977) Biostratigraphic usefulness of stromatolitic Precam­brian microbiotas: a preliminary analysis. Precambrian Res 5:143–173

    Article  Google Scholar 

  • Schopf JW (1978) The evolution of the earliest cells. Sci Am 239:110–138

    Article  PubMed  CAS  Google Scholar 

  • Schopf JW (1992a) Paleobiology of the Archean. In: Schopf JW, Klein C (eds) The Proterozoic biosphere, a multidisciplinary study. Cambridge University Press, New York, pp 25–39, 1348 pp

    Chapter  Google Scholar 

  • Schopf JW (1992b) Proterozoic prokaryotes: affinities, geologic distribution, and evolutionary trends. In: Schopf JW, Klein C (eds) The Proterozoic biosphere, a multidisciplinary study. Cambridge University Press, New York, pp 195–218, 1348 pp

    Chapter  Google Scholar 

  • Schopf JW (1992c) Evolution of the Proterozoic biosphere: benchmarks, tempo, and mode. In: Schopf JW, Klein C (eds) The Proterozoic biosphere, a multidisciplinary study. Cambridge University Press, New York, pp 583–600, 1348 pp

    Chapter  Google Scholar 

  • Schopf JW (1993) Microfossils of the Early Archean Apex chert: new evidence of the antiquity of life. Science 260:640–646

    Article  PubMed  CAS  Google Scholar 

  • Schopf JW (1994a) Disparate rates, differing fates: the rules of evolution changed from the Precambrian to the Phanerozoic. Proc Natl Acad Sci USA 91:6735–6742

    Article  PubMed  CAS  Google Scholar 

  • Schopf JW (1994b) The oldest known records of life: stromatolites, microfossils, and organic matter from the Early Archean of South Africa and Western Australia. In: Bengtson S (ed) Early life on earth. Columbia University Press, New York, pp 193–206, 656 pp

    Google Scholar 

  • Schopf JW (1996) Metabolic memories of Earth’s earliest biosphere. In: Marshall CR, Schopf JW (eds) Evolution and the molecular revolution. Jones and Bartlett, Boston, pp 73–105

    Google Scholar 

  • Schopf JW (1999) Cradle of life, the discovery of earth’s earliest fossils. Princeton University Press, Princeton, 367 pp

    Google Scholar 

  • Schopf JW (2004) Geochemical and submicron-scale morphologic analyses of individual Precambrian microorganisms. In: Hill JR, Aizenshtat Z, Baedecker MJ, Claypool G, Eganhouse R, Goldhaber M, Leventhal J, Peters K (eds) Geochemical investigation in Earth and Space Science: a tribute to Isaac R. Kaplan. The Geochemical Society, St. Louis, pp. 365–375, 466 pp

    Google Scholar 

  • Schopf JW (2006) Fossil evidence of Archaean life. Philos Trans R Soc B 361:869–885

    Article  CAS  Google Scholar 

  • Schopf JW (2009) Paleontology, microbial. In: Lederberg J, Schaechter M (eds) Encyclopedia of microbiology, 3rd edn. Elsevier, Amsterdam, pp 390–400, 4600 pp

    Chapter  Google Scholar 

  • Schopf JW, Bottjer DJ (2009) Preface: world summit on ancient microscopic fossils. Precambrian Res 173:1–3

    Article  CAS  Google Scholar 

  • Schopf JW, Kudryavtsev AB (2005) Three-dimensional Raman imagery of Precambrian microscopic organisms. Geobiology 3:1–12

    Article  Google Scholar 

  • Schopf JW, Kudryavtsev AB (2009) Confocal laser scanning microscopy and Raman imagery of ancient microscopic fossils. Precambrian Res 173:9–49

    Google Scholar 

  • Schopf JW, Kudryavtsev AB, Agresti DG, Wdowiak TJ, Czaja AD (2002) Laser-Raman imagery of Earth’s earliest fossils. Nature 416:73–76

    Article  PubMed  CAS  Google Scholar 

  • Schopf JW, Kudryavtsev AB, Agresti DG, Czaja AD, Wdowiak TJ (2005) Raman imagery: a new approach to assess the geochemical maturity and biogenicity of permineralized Precambrian fossils. Astrobiology 5:333–371

    Article  PubMed  CAS  Google Scholar 

  • Schopf JW, Tripathi AB, Kudryavtsev AB (2006) Three-dimensional optical confocal imagery of Precambrian microscopic organisms. Astrobiology 1:1–16

    Article  CAS  Google Scholar 

  • Schopf JW, Kudryavtsev AB, Czaja AD, Tripathi AB (2007) Evidence of Archean life: stromatolites and microfossils. Precambrian Res 158:141–155

    Article  CAS  Google Scholar 

  • Schopf JW, Tewari VC, Kudryavtsev AB (2008) Discovery of a new chert-permineralized microbiota of the Proterozoic Buxa Formation of the Ranjit Window, Sikkim, N.E. India, and its astrobiological implications. Astrobiology 8:735–746

    Article  PubMed  Google Scholar 

  • Schopf JW, Kudryavtsev AB, Sergeev VN (2010) Confocal laser scanning microscopy and Raman imagery of the Late Neoproterozoic Chichkan microbiota of South Kazakhstan. J Paleontol 84:402–416

    Article  Google Scholar 

  • Strauss H, Moore TB (1992) Abundances and isotopic compositions of carbon and sulfur species in whole rock and kerogen samples. In: SchopfJW, Klein C (eds) The Proterozoic biosphere, a multidisciplinary study. Cambridge University Press, New York, pp 709–798, 1348 pp

    Chapter  Google Scholar 

  • Summons RE (1992) Abundance and composition of extractable organic matter. In: Schopf JW, Klein C (eds) The Proterozoic biosphere, a multidisciplinary study. Cambridge University Press, New York, pp 101–115, 1348 pp

    Google Scholar 

  • Summons RE, Bradley AS, Janke LL, Waldbauer JR (2006) Steroids, triterpenoids and molecular oxygen. Philos Trans R Soc B 361:951–968

    Article  CAS  Google Scholar 

  • Waldbauer JR, Sherman LS, Sumner DY, Summons RE (2009) Late Archean molecular fossils from the Transvaal Supergroup record the antiquity of microbial diversity and aerobiosis. Precambrian Res 169:28–47

    Article  CAS  Google Scholar 

  • Zehr JP, Mellon TM, Hiorns WH (1997) Phylogeny of cyanobacterial nifH genes: evolutionary implications and potential applications to natural assemblages. Microbiology 143:1443–1450

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Golubić S (1987) Endolithic microfossils (Cyanophyta) from Early Proterozoic stromatolites, Hebei, China. Acta Micropaleontol Sin 4:1–12

    Google Scholar 

Download references

Acknowledgments

Based in part on Schopf (2009), preparation of this article has been supported by the Center for the Study of Evolution and the Origin of Life at UCLA. I thank J. Shen-Miller for a helpful review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. William Schopf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Schopf, J.W. (2012). The Fossil Record of Cyanobacteria. In: Whitton, B. (eds) Ecology of Cyanobacteria II. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3855-3_2

Download citation

Publish with us

Policies and ethics