Skip to main content

Progress in Predictions of Environmentally Important Physicochemical Properties of Energetic Materials: Applications of Quantum-Chemical Calculations

  • Chapter
  • First Online:
Practical Aspects of Computational Chemistry II

Abstract

The review describes the advances of quantum-chemically based approximations (namely, COSMO-RS) in the prediction of several environmentally important physicochemical properties of energetic materials: vapor pressure, Henry’s law constants, water solubility, and octanol–water partition coefficients. It includes introduction, the section that briefly discusses COSMO-RS – the most popular quantum-chemistry-based statistical thermodynamics approximation, and the references on similar quantum-chemical approaches. Since the solubility, probably, plays the most important role in many environmental characteristics of energetic materials, the major section of the review describes the current status of the quantum-chemically based predictions of this property. Also, the description of a modeling of salinity effects is discussed. Then subsequent few sections review the current advancements of the calculations of other environmentally important physical properties of energetic compounds.

It is concluded that the combination of continuum model of solvent with statistical thermodynamics (what in fact represents the approximations of the COSMO-RS type) is a quite accurate prediction tool that on one hand avoids empirically based QSPR approximations, and on another hand, allows not to use such computationally demanding techniques as molecular dynamics and Monte Carlo approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sangster J (1997) Octanol-water partition coefficients: fundamental and physical chemistry. Wiley, New York

    Google Scholar 

  2. Lenchitz C, Velicky RW (1970) J Chem Eng Data 15:401–403

    Article  CAS  Google Scholar 

  3. Leggett DC (1977) J Chromatogr A 133:83–90

    Article  CAS  Google Scholar 

  4. Pella PA (1977) J Chem Thermodyn 9:301–305

    Article  CAS  Google Scholar 

  5. Cundall RB, Palmer TF, Wood CEC (1978) J Chem Soc Farad T 1 74:1339–1345

    Article  CAS  Google Scholar 

  6. Karakaya P, Sidhoum M, Christodoulatos C, Nicolich S, Balas W (2005) J Hazard Mater 120:183–191

    Article  CAS  Google Scholar 

  7. Ro KS, Venugopal A, Adrian DD, Constant D, Qaisi K, Valsaraj KT, Thibodeaux LJ, Roy D (1996) J Chem Eng Data 41:758–761

    Article  CAS  Google Scholar 

  8. Hansch C, Leo A (eds) (1995) Exploring QSAR: fundamentals and applications in chemistry and biology, vol 1. An American Chemical Society Publication, Washington, DC

    Google Scholar 

  9. Ognichenko LN, Kuz’min VE, Gorb L, Muratov EN, Artemenko AG, Kovdienko NA, Hill FC, Leszczynski J (2012) In: Leszczynski J, Shukla MK (eds) Practical aspects of computational chemistry II. Springer, Berlin

    Google Scholar 

  10. Doweyko AM (2004) J Comput Aided Mol Des 18:587–596

    Article  CAS  Google Scholar 

  11. Hughes LD, Palmer DS, Nigsch F, Mitchell JBO (2008) J Chem Inf Model 48:220–232

    Article  CAS  Google Scholar 

  12. Schleyer PvR (ed) (1998) Encyclopedia of computational chemistry. Wiley & Sons, Chichester, New York, Weinheim, Brishbane, Singapore, Toronto

    Google Scholar 

  13. Klamt A (1995) J Phys Chem 99:2224–2235

    Article  CAS  Google Scholar 

  14. Kholod Y, Okovytyy S, Kuramshina G, Qasim M, Gorb L, Leszczynski J (2007) J Mol Struc 843:14–25

    Article  CAS  Google Scholar 

  15. Klamt A (2005) COSMO-RS: from quantum chemistry to fluid phase thermodynamics and drug design. Elsevier Science

    Google Scholar 

  16. Klamt A, Eckert F, Diedenhofen M (2009) Fluid Phase Equilibr 285:15–18

    Article  CAS  Google Scholar 

  17. Diedenhofen M, Klamt A (2010) Fluid Phase Equilibr 294:31–38

    Article  CAS  Google Scholar 

  18. Cammi R (1998) J Chem Phys 109:3185–3196

    Article  CAS  Google Scholar 

  19. Schafer A, Klamt A, Sattel D, Lohrenz JCW, Eckert F (2000) Phys Chem Chem Phys 2: 2187–2193

    Article  CAS  Google Scholar 

  20. Tanpipat N, Klamt A, Clausen I, Andzelm J (1999) Abstr Pap Am Chem Soc 217:U671

    Google Scholar 

  21. Diedenhofen M, Klamt A (2010) Fluid Phase Equilib 294:31–38

    Google Scholar 

  22. Lin ST, Sandler SI (2002) Ind Eng Chem Res 41:899–913

    Article  CAS  Google Scholar 

  23. Winget P, Hawkins GD, Cramer CJ, Truhlar DG (2000) J Phys Chem B 104:4726–4734

    Article  CAS  Google Scholar 

  24. COSMOThermX is commertial software of COSMOlogic GmbH & Co. http://www.cosmologic.de/index.php

  25. Qasim M, Kholod Y, Gorb L, Magers D, Honea P, Leszczynski J (2007) Chemosphere 69:1144–1150

    Article  CAS  Google Scholar 

  26. Klamt A, Eckert F, Hornig M, Beck ME, Burger T (2002) J Comput Chem 23:275–281

    Article  CAS  Google Scholar 

  27. On line Interactive PhysProp Database. http://www.srcinc.com/what-we-do/product.aspx?id=133

  28. Kuz’min V, Artemenko A, Muratov E (2008) J Comput Aided Mol Des 22:403–421

    Article  Google Scholar 

  29. Duffy EM, Jorgensen WL (2000) J Am Chem Soc 122:2878–2888

    Article  CAS  Google Scholar 

  30. Klopman G, Zhu H (2001) J Chem Inf Comput Sci 41:439–445

    Article  CAS  Google Scholar 

  31. Toghiani RK, Toghiani H, Maloney SW, Boddu VM (2008) Fluid Phase Equilibr 264:86–92

    Article  CAS  Google Scholar 

  32. US EPA (2011) Estimation Programs Interface Suite™ for Microsoft® Windows, v 4.10. United States Environmental Protection Agency, Washington, DC, USA. http://www.epa.gov/opptintr/exposure/pubs/episuite.htm

  33. Hilal SH, Carreira LA, Karickhoff SW (2003) QSAR & Combinatorial Science 22:565–574

    Google Scholar 

  34. Kholod YA, Muratov EN, Gorb LG, Hill FC, Artemenko AG, Kuzmin VE, Qasim M, Leszczynski J (2009) Environ Sci Technol 43:9208–9215

    Article  CAS  Google Scholar 

  35. Kholod YA, Gryn’ova G, Gorb L, Hill FC, Leszczynski J (2011) Chemosphere 83:287–294

    Article  CAS  Google Scholar 

  36. Luning Prak DJ, O’Sullivan DW (2011) J Chem Eng Data 56:2630–2633

    Article  CAS  Google Scholar 

  37. Luning Prak DJ, O’Sullivan DW (2009) J Chem Eng Data 54:1231–1235

    Article  CAS  Google Scholar 

  38. Rivail J-L, Rinaldi D (1976) Chem Phys 18:233–242

    Article  CAS  Google Scholar 

  39. Boddu V, Render P (eds) (2010) In: Energetic materials. Thermophysical Properties, Predictions, and Experimental Measurements. CRS Press, Taylor & Fransis Group, Boca raton, London, New York

    Google Scholar 

  40. Schmelling DC, Gray KA, Kamat PV (1996) Environ Sci Technol 30:2547–2555

    Article  CAS  Google Scholar 

  41. Li MZ, Comfort DS, Shea JP (1997) Destruction of 2,4,6-trinitrotoluene by Fenton oxidation. American Society of Agronomy, Madison. ETATS-UNIS

    Google Scholar 

  42. Suen WC, Spain JC (1993) J. Bacteriol 175:1831–1837

    CAS  Google Scholar 

  43. Lin S-T, Sandler SI (2001) Ind Eng Chem Res 41:899–913

    Article  Google Scholar 

  44. Sapei E, Zaytseva A, Uusi-Kyyny P, Keskinen KI, Aittamaa J (2006) J Chem Eng Data 52: 192–198

    Article  Google Scholar 

  45. Sapei E, Zaytseva A, Uusi-Kyyny P, Keskinen KI, Aittamaa J (2006) J Chem Eng Data 51:2203–2208

    Article  CAS  Google Scholar 

  46. Pasanen M, Zaytseva A, Uusi-Kyyny P, Pokki JP, Pakkanen M, Aittamaa J (2006) J Chem Eng Data 51:554–561

    Article  CAS  Google Scholar 

  47. Verevkin SP, Emel’yanenko VN (2007) J Chem Eng Data 52:499–510

    Article  CAS  Google Scholar 

  48. Schroder B, Santos LMNBF, Rocha MAA, Oliveira MB, Marrucho IM, Coutinho JAP (2010) Chemosphere 79:821–829

    Article  Google Scholar 

  49. Phillips KL, Sandler SI, Greene RW, Di Toro DM (2008) Environ Sci Technol 42:8412–8418

    Article  CAS  Google Scholar 

  50. Franke R, Hannebauer B, Jung S (2010) Chem Eng Technol 33:251–257

    Article  CAS  Google Scholar 

  51. Buggert M, Cadena C, Mokrushina L, Smirnova I, Maginn EJ, Arlt W (2009) Chem Eng Technol 32:977–986

    Article  CAS  Google Scholar 

  52. Boda A, Musharaf Ali S, Shenoi MRK (2010) Fluid Phase Equilibr 288:111–120

    Article  CAS  Google Scholar 

  53. Wittekindt C, Goss K-U (2009) Chemosphere 76:460–464

    Article  CAS  Google Scholar 

  54. Wittekindt C, Klamt A (2009) QSAR Comb Sci 28:874–877

    Article  CAS  Google Scholar 

  55. Oleszek-Kudlak S, Grabda M, Shibata E, Eckert F, Nakamura T (2005) Environ Toxicol Chem 24:1368–1375

    Article  CAS  Google Scholar 

  56. Klamt A, Eckert F, Diedenhofen M (2009) J Phys Chem B 113:4508–4510

    Article  CAS  Google Scholar 

  57. Klamt A, Diedenhofen M (2010) J Comput Aided Mol Des 24:357–360

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the NSF CREST Interdisciplinary Nanotoxicity Center NSF-CREST for support – Grant # HRD-0833178, and the NSF-EPSCoR Award #: 362492–190200–01\NSFEPS-0903787. The use of trade, product, or firm names in this report is for descriptive purposes only and does not imply endorsement by the U.S. Government. The tests described and the resulting data presented herein, unless otherwise noted, were obtained from research conducted under the Environmental Quality Technology Program of the United States Army Corps of Engineers by the USAERDC. Permission was granted by the Chief of Engineers to publish this information. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Leszczynski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gorb, L., Hill, F.C., Kholod, Y., Muratov, E.N., Kuz’min, V.E., Leszczynski, J. (2012). Progress in Predictions of Environmentally Important Physicochemical Properties of Energetic Materials: Applications of Quantum-Chemical Calculations. In: Leszczynski, J., Shukla, M. (eds) Practical Aspects of Computational Chemistry II. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0923-2_9

Download citation

Publish with us

Policies and ethics