Skip to main content

Application of Isoconversional Methods for the Processes Occurring in Glassy and Amorphous Materials

  • Chapter
  • First Online:
Thermal analysis of Micro, Nano- and Non-Crystalline Materials

Part of the book series: Hot Topics in Thermal Analysis and Calorimetry ((HTTC,volume 9))

  • 2610 Accesses

Abstract

An attribute of amorphous/glassy state is that it is a solid state in which the atoms or molecules are not arranged in any long-range regular order. A glass is traditionally understood as the product obtained from a melted material that has been cooled at a sufficiently high cooling rate to obtain a rigid material without crystallization. The term amorphous is more general and encompasses not only the glasses but also non-crystalline substances prepared by other routes such as precipitation from solution, etc. Most solid materials can be prepared in the glassy/amorphous state, so that many branches of science are touched with the problem of amorphous-state properties, such as glass science, polymer science, metallurgy, biology, pharmaceutical science, and many other scientific disciplines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avrami M (1939) Kinetics of phase change. I. General theory. J Chem Phys 7:1103–1112

    Article  CAS  Google Scholar 

  2. Avrami M (1940) Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224

    Article  CAS  Google Scholar 

  3. Avrami M (1941) Kinetics of phase change. III. Granulation, phase change, and microstructure kinetics of phase change. J Chem Phys 9:177–184

    Article  CAS  Google Scholar 

  4. Kolmogorov AE (1937) On the statistic theory of metal crystallization (in Russian). Izv Akad Nauk SSSR Ser Mat 1:355–359

    Google Scholar 

  5. Johnson WA, Mehl RF (1939) Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min Metall Pet Eng 135:416–458

    Google Scholar 

  6. Christian JW (1975) The theory of transformations in metals and alloys, 2nd edn. Pergamon Press, New York

    Google Scholar 

  7. Henderson DW (1979) Experimental analysis of non-isothermal transformations involving nucleation and growth. J Therm Anal 15:325–331

    Article  CAS  Google Scholar 

  8. Henderson DW (1979) Thermal analysis of nonisothermal crystallization kinetics in glass forming liquids. J Non-Cryst Solids 30:301–315

    Article  CAS  Google Scholar 

  9. Shepilov MP, Baik DS (1994) Computer simulation of crystallization kinetics for the model with simultaneous nucleation of randomly-oriented ellipsoidal crystals. J Non-Cryst Solids 171:141–156

    Article  CAS  Google Scholar 

  10. Šesták J (1984) Thermophysical properties of solids. Their measurements and theoretical analysis. Elsevier, Amsterdam

    Google Scholar 

  11. Málek J (2000) Kinetic analysis of crystallization processes in amorphous materials. Thermochim Acta 355:239–253

    Article  Google Scholar 

  12. Zanotto ED (1992) Crystallization of liquids and glasses. Braz J Phys 22:77–84

    CAS  Google Scholar 

  13. Zanotto ED (1996) The applicability of the general theory of phase transformations to glass crystallization. Thermochim Acta 280(281):73–82

    Article  Google Scholar 

  14. Weinberg MC (1996) Glass-formation and crystallization kinetics. Thermochim Acta 280(281):63–71

    Article  Google Scholar 

  15. Šesták J, Berggren G (1971) Study of kinetics of mechanism of solid state reactions at increasing temperature. Thermochim Acta 3:1–12

    Article  Google Scholar 

  16. Šimon P (2011) Forty years of the Šesták–Berggren equation. Thermochim Acta 520:156–157

    Article  Google Scholar 

  17. Brown ME, Dollimore D, Galwey AK (1980) Comprehensive chemical kinetics, vol 22. Elsevier, Amsterdam

    Google Scholar 

  18. Šimon P (2004) Isoconversional methods – fundamentals, meaning and application. J Therm Anal Calorim 76:123–132

    Article  Google Scholar 

  19. Vyazovkin S (2007) Isoconversional kinetics, chapter 13. In: Brown M, Gallagher P (eds) Handbook of thermal analysis and calorimetry, vol 5. Elsevier, Amsterdam. ISBN 13:978-0-444-53123-0

    Google Scholar 

  20. Michaelsen C, Dahms C (1996) On the determination of nucleation and growth kinetics by calorimetry. Thermochim Acta 288:9–27

    Article  CAS  Google Scholar 

  21. Šimon P (2005) Considerations on the single-step kinetics approximation. J Therm Anal Calorim 82:651–657

    Article  Google Scholar 

  22. Šimon P (2005) Single-step kinetics approximation employing non-Arrhenius temperature functions. J Therm Anal Calorim 79:703–708

    Article  Google Scholar 

  23. Flynn JH, Wall LA (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett 4:323–328

    Article  CAS  Google Scholar 

  24. Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38:1881–1886

    Article  CAS  Google Scholar 

  25. Doyle CD (1962) Estimating isothermal life from thermogravimetric data. J Appl Polym Sci 6:639–642

    Article  CAS  Google Scholar 

  26. Coats AW, Redfern JP (1964) Kinetic parameters from thermogravimetric data. Nature 201:68–69

    Article  CAS  Google Scholar 

  27. Sbirrazzuoli N, Girault Y, Elégant L (1997) Simulations for evaluation of kinetic methods in differential scanning calorimetry. Part 3 – peak maximum evolution methods and isoconversional methods. Thermochim Acta 293:25–37

    Article  CAS  Google Scholar 

  28. Vyazovkin S (1997) Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J Comput Chem 18:393–402

    Article  CAS  Google Scholar 

  29. Šimon P, Nemčeková K, Jóna E, Plško A, Ondrušová D (2005) Thermal stability of glass evaluated by the induction period of crystallization. Thermochim Acta 428:11–14

    Article  Google Scholar 

  30. Šimon P, Illeková E, Mojumdar SC (2006) Kinetics of crystallization of metallic glasses studied by non-isothermal and isothermal DSC. J Therm Anal Calorim 83:67–69

    Article  Google Scholar 

  31. Šimon P, Jóna E, Pavlík V (2008) Thermal properties of oxide glasses. Part III. Thermal stability of Li2O · 2SiO2 · nMeO2 glasses (Me = Ti, Zr). J Therm Anal Calorim 94:421–425

    Article  Google Scholar 

  32. Friedman HL (1963) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenol plastic. J Polym Sci 6C:183–195

    Google Scholar 

  33. Vyazovkin S (2001) Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem 22:178–183

    Article  CAS  Google Scholar 

  34. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706

    Article  CAS  Google Scholar 

  35. Chen LC, Spaepen F (1991) Analysis of calorimetric measurements of grain growth. J Appl Phys 69:679–688

    Article  CAS  Google Scholar 

  36. Matusita K, Sakka S (1979) Kinetic study of the crystallisation of glass by differential scanning calorimetry. Phys Chem Glasses 20:81–84

    CAS  Google Scholar 

  37. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19

    Article  CAS  Google Scholar 

  38. Ozawa T (1971) Kinetic analysis of derivative curves in thermal analysis. Polymer 12:150–158

    Article  CAS  Google Scholar 

  39. Ozawa T (1984) Nonisothermal kinetics of crystal growth from preexisting nuclei. Bull Chem Soc Jpn 57:639–643

    Article  CAS  Google Scholar 

  40. Thomas P, Šimon P (2005) A pseudoisothermal kinetic analysis of the recrystallisation of nickel sulphide measured by non-isothermal DSC. J Therm Anal Calorim 80:77–80

    Article  CAS  Google Scholar 

  41. Ozawa T (2005) Kinetics of growth from pre-existing surface nuclei. J Therm Anal Calorim 82:687–690

    Article  CAS  Google Scholar 

  42. Ray CS, Day DE (1996) Identifying internal and surface crystallization by differential thermal analysis for the glass-to-crystal transformations. Thermochim Acta 280(281):163–174

    Article  Google Scholar 

  43. Turnbull D, Cohen MH (1960) In: Mackenzie JD (ed) Modern aspects of the vitreous state. Butterworth, London, pp 38–62

    Google Scholar 

  44. Matusita K, Komatsu T, Yokota R (1984) Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials. J Mater Sci 19:291–296

    Article  CAS  Google Scholar 

  45. Šimon P (2006) Induction periods: theory and applications. J Therm Anal Calorim 84:263–270

    Article  Google Scholar 

  46. Starink MJ, Zahra AM (1997) An analysis method for nucleation and growth controlled reactions at constant heating rates. Thermochim Acta 292:159–168

    Article  CAS  Google Scholar 

  47. Augis JA, Bennett JE (1978) Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J Therm Anal Calorim 13:283–292

    Article  CAS  Google Scholar 

  48. Dobreva A, Stoyanov A, Gutzow I (1991) Analysis of differential scanning calorimetry data on the nonisothermal kinetics of crystallization in polymer melts. J Appl Polym Sci Appl Polym Symp 48:473–480

    Article  CAS  Google Scholar 

  49. Angell CA, Stell RC, Sichina W (1982) Viscosity-temperature function for sorbitol from combined viscosity and differential scanning calorimetry studies. J Phys Chem 86:1540–1542

    Article  CAS  Google Scholar 

  50. Lacey D, Nestor G, Richardson MJ (1994) Structural recovery in isotropic and smectic glasses. Thermochim Acta 238:99–111

    Article  CAS  Google Scholar 

  51. Vyazovkin S, Sbirrazzuoli N, Dranca I (2004) Variation of the effective activation energy throughout the glass transition. Macromol Rapid Commun 25:1708–1713

    Article  CAS  Google Scholar 

  52. Flynn JH (1997) The temperature integral: its use and abuse. Thermochim Acta 300:83–92

    Article  CAS  Google Scholar 

  53. Vyazovkin S, Wight CA (1997) Kinetics in solids. Ann Rev Phys Chem 48:125–149

    Article  CAS  Google Scholar 

  54. Vyazovkin S (2000) Kinetic concepts of thermally stimulated reactions in solids: a view from a historical perspective. Int Revs Phys Chem 19:45–60

    Article  CAS  Google Scholar 

  55. Vyazovkin S, Sbirrazzuoli N (2004) Isoconversional approach to evaluating the Hoffman–Lauritzen Parameters (U* and K g) from the overall rates of nonisothermal crystallization. Macromol Rapid Commun 25:733–738

    Article  CAS  Google Scholar 

  56. Šimon P (2007) The single-step approximation: attributes, strong and weak sides. J Therm Anal Calorim 88:709–715

    Article  Google Scholar 

  57. Vyazovkin S (2003) Reply to “What is meant by the term ‘variable activation energy’ when applied in the kinetics analyses of solid state decompositions (crystolysis reactions)?”. Thermochim Acta 397:269–271

    Article  CAS  Google Scholar 

  58. Ozawa T (2002) Comments on “The non-isothermal devitrification of glasses in the CaO 4GeO2–SrO–4GeO2 composition range” by Catauro M, Marotta, A ((2001) Thermochimica Acta 371:121–126). Thermochim Acta 386:99–100

    Google Scholar 

  59. Frade JR, Queiroz CM, Fernandez MH (2004) Re-examination of effects of nucleation temperature and time on glass crystallization. J Non-Cryst Solids 333:271–277

    Article  CAS  Google Scholar 

  60. Koga N, Šesták J (1991) Kinetic compensation effect as a mathematical consequence of the exponential rate constant. Thermochim Acta 182:201–208

    Article  CAS  Google Scholar 

  61. Hodge LM (1994) Enthalpy relaxation and recovery in amorphous materials. J Non-Cryst Solids 169:211–266

    Article  CAS  Google Scholar 

  62. Šimon P, Hynek D, Malíková M, Cibulková Z (2008) Extrapolation of accelerated thermooxidative tests to lower temperatures applying non-Arrhenius temperature functions. J Therm Anal Calorim 93:817–821

    Article  Google Scholar 

  63. Šimon P (2009) Material stability predictions applying a new non-Arrhenian temperature function. J Therm Anal Calorim 97:391–396

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Šimon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Šimon, P., Thomas, P.S. (2012). Application of Isoconversional Methods for the Processes Occurring in Glassy and Amorphous Materials. In: Šesták, J., Šimon, P. (eds) Thermal analysis of Micro, Nano- and Non-Crystalline Materials. Hot Topics in Thermal Analysis and Calorimetry, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3150-1_11

Download citation

Publish with us

Policies and ethics