Skip to main content

Nonlinear eigenvalue problems

  • Conference paper
Resurgence, Physics and Numbers

Part of the book series: CRM Series ((CRMSNS,volume 20))

Abstract

This paper begins with a review of earlier work on extending the notion of an eigenvalue problem for a linear differential equation to an eigenvalue problem for a nonlinear differential equation. In previous work it was argued that in the nonlinear context a separatrix plays the role of an eigenfunction and the initial conditions that spawn the separatrix play the role of an eigenvalue. Previously discussed nonlinear differential equations that have discrete eigenvalue structure include the first-order equation y′ = cos(πxy) and the Painlevé transcendents P-I and P-II. In new work it is shown here that the concept of a nonlinear eigenvalue problem extends to huge classes of nonlinear differential equations. Numerical and analytical results on the eigenvalue behavior for some of these new differential equations are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. M. Bender and S. A. Orszag, “Advanced Mathematical Methods for Scientists and Engineers”, McGraw Hill, New York, 1978, chap. 10.

    MATH  Google Scholar 

  2. C. M. Bender, A. Fring and J. Komijani, J. Phys. A: Math. Theor. 47 (2014), 235204.

    Article  Google Scholar 

  3. O. S. Kerr, J. Phys. A: Math. Theor. 47 (2014), 368001.

    Article  Google Scholar 

  4. C. M. Bender and J. Komijani, J. Phys. A: Math. Theor. 48 (2015), 475202.

    Article  Google Scholar 

  5. C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80 5246 (1998), 5243.

    Article  Google Scholar 

  6. E. L. Ince, “Ordinary Differential Equations”, Dover, New York, 1956

    MATH  Google Scholar 

  7. J. W. Miles, Proc. Royal Soc. London A 361 (1978), 277

    Article  Google Scholar 

  8. P. Holmes and D. Spence, Quart. J. Mech. Appl. Math. 37 (1984), 525

    Article  MathSciNet  Google Scholar 

  9. S. P. Hastings and J. B. Mcleod, “Classical Methods in Ordinary Differential Equations: With applications to boundary value problems”, Graduate Studies in Math., Vol. 129, American Mathematical Society, 2011.

    Google Scholar 

  10. A detailed study of the asymptotic behavior of the Painlevé transcendents may be found in M. JIMBO and T. Miwa, Physica D 2 (1981), 407.

    Article  MathSciNet  Google Scholar 

  11. Separatrix behavior of the first Painlevé transcendent is mentioned briefly in A. A. Kapaev, Differential Equations 24 (1989), 1107

    MathSciNet  Google Scholar 

  12. see also A. A. Kapaev, CRM Proc. Lect. Notes 32 (2002), 157.

    Article  MathSciNet  Google Scholar 

  13. P. A. Clarkson, J. Comp. Appl. Math. 153 (2003), 127.

    Article  Google Scholar 

  14. D. Maseoro, “Essays on the Painlevé First Equation and the Cubic Oscillator”, PhD Thesis, SISSA (2010).

    Google Scholar 

  15. T. Kawai and Y. Takei, “Algebraic Analysis of Singular Perturbation Theory”, American Mathematical Society, New York, 2005.

    MATH  Google Scholar 

  16. O. Costin, R. D. Costin and M. Huang, Tronquée solutions of the Painlevé equation P1 (2013), unpublished.

    Google Scholar 

  17. A. S. Fokas, A. R. Its, A. A. Kapaev and V. Y. Novokshonov, “Painlevé Transcendents: The Riemann-Hilbert Approach”, American Mathematical Society, New York, 2006.

    Book  MATH  Google Scholar 

  18. The spin-spin correlation function for the two-dimensional Ising model for temperatures near T c is described by P-III. See T. T. Wu, B. M. Mccoy, C. A. Tracy and E. Barouch, Phys. Rev. B 13 (1976), 316.

    Article  Google Scholar 

  19. For all temperatures the diagonal correlation function for the Ising model in two dimensions 〈σ0,0N,N〉 is given in terms of P-VI. See M. Jimbo and T. Miwa, Proc. Jap. Acad. 56A (1980), 405 and 57A (1981), 347.

    Article  Google Scholar 

  20. E. Brézin and V. A. Kazakov, Phys. Lett. B 236 (1990), 144.

    Article  MathSciNet  Google Scholar 

  21. M. Douglas and S. Shenker, Nucl. Phys. B 335 (1990), 635.

    Article  Google Scholar 

  22. D. Gross and A. Migdal, Nucl. Phys. B 340 (1990), 333.

    Article  Google Scholar 

  23. G. Moore, Comm. Math. Phys. 133 (1990), 261.

    Article  MathSciNet  Google Scholar 

  24. G. Moore, Prog. Theor. Phys. Suppl. 102 (1990), 255.

    Article  Google Scholar 

  25. A. S. Fokas, A. R. Its and A. V. Kitaev, Comm. Math. Phys. 147 (1992), 395.

    Article  MathSciNet  Google Scholar 

  26. See W. P. Reinhardt, Ann. Rev. Phys. Chem. 33 (1982), 223 for a review of complex rotation of coordinates.

    Article  Google Scholar 

Download references

Authors

Editor information

Frédéric Fauvet Dominique Manchon Stefano Marmi David Sauzin

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Scuola Normale Superiore Pisa

About this paper

Cite this paper

Bender, C.M., Komijani, J., Wang, Qh. (2017). Nonlinear eigenvalue problems. In: Fauvet, F., Manchon, D., Marmi, S., Sauzin, D. (eds) Resurgence, Physics and Numbers. CRM Series, vol 20. Edizioni della Normale, Pisa. https://doi.org/10.1007/978-88-7642-613-1_2

Download citation

Publish with us

Policies and ethics