Skip to main content

How to Reduce the Radiation Burden in Cardiac CT

  • Chapter
  • First Online:
From Basic Cardiac Imaging to Image Fusion
  • 1222 Accesses

Abstract

The introduction of multidetector computed tomography coronary angiography (MDCT-CA) in the late 90s has allowed a non-invasive evaluation of coronary artery anatomy, representing a promising alternative to invasive coronary angiography to rule out coronary artery disease in patients with low to intermediate risk with disagreement between symptoms and functional stress tests findings. In unknown unascertained dilated cardiomyopathy and to evaluate the coronary artery bypass graft and stent patency. However, because a trade-off between image noise and image quality occurs, a higher radiation exposure needs to be taken in account to maintain an adequate image quality. Therefore, due to the impressive MDCT number increase, the annual per capita radiation dose has increased from 0.53 to 3 mSv that is close to the natural radiation background with almost half dose derived from MDCT. Several strategies to minimize radiation dose has have been recently developed such as scan length optimization, tube voltage and tube current reduction, tube current modulation ECG-triggered, dual source MDCT, prospective ECG-triggering, a higher number of slices, the use of adaptive statistical iterative reconstruction algorithm and high pitch MDCT-CA. The aim of the chapter is to define overall radiological risk of MDCT-CA in clinical practice and to assess the protocol strategy to minimize the overall radiation exposure of the patients according to the ALARA principle (as low as reasonably achievable).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Picano E (2005) Economic and biological costs of cardiac imaging. Cardiovasc Ultrasound 25:3–13

    Google Scholar 

  2. Pontone G, Andreini D, Bartorelli AL, et al (2012) Radiation dose and diagnostic accuracy of multidetector computed tomography for the detection of significant coronary artery stenoses a meta-analysis. Int J Cardiol 160:155–164

    Article  PubMed  Google Scholar 

  3. Hausleiter J, Meyer T, Hadamitzky M, et al (2006) Radiation dose estimates from cardiac multi slice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation 113:1305–1310

    Article  PubMed  Google Scholar 

  4. Mettler FA Jr, Thomadsen BR, Bhargavan M, et al (2008) Medical radiation exposure in the, U. S. in 2006: preliminary results. Health Phys 95:502–507

    Article  PubMed  CAS  Google Scholar 

  5. International commission on radiological protection (1991) Radiological protection in biomedical research. Pergamon Press, UK

    Google Scholar 

  6. Preston DL, Ron E, Tokuoka S, et al (2007) Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res 168:1–64

    Article  PubMed  CAS  Google Scholar 

  7. Cardis E, Vrijheid M, Blettner M et al (2007) The 15-country collaborative study of cancer risk among radiation workers in the nuclear industry: estimates of radiation related cancer risks. Radiat Res 167:396–416

    Article  PubMed  CAS  Google Scholar 

  8. Brenner DJ, Hall EJ (2007) Computed tomography–an increasing source of radiation exposure. N Engl J Med 357:2277–2284

    Article  PubMed  CAS  Google Scholar 

  9. Gerber TC, Kantor B, McCollough CH (2009) Radiation dose and safety in cardiac computed tomography. Cardiol Clin 27:665–677

    Article  PubMed  Google Scholar 

  10. Gibbons RJ, Miller TD, Hodge D, Urban L, Araoz PA, Pellikka P, McCully RB (2008) Application of appropriateness criteria to stress single-photon emission computed tomography sestamibi studies and stress echocardiograms in an academic medical center. J Am Coll Cardiol 51:1283–1289

    Article  PubMed  Google Scholar 

  11. European Commission (2000) European guidelines on quality criteria for computed tomography, EUR 16262EN. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  12. Geleijns J, Joemai RM, Dewey M, de Roos A, Zankl M, Cantera AC, Artells MS (2011) Radiation exposure to patients in a multicenter coronary angiography trial (CORE 64). AJR Am J Roentgenol 196:1126–1132

    Article  PubMed  Google Scholar 

  13. International Commission on Radiological Protection (2007) Recommendations of the international commission on radiological protection (ICRP Publication 103). Ann ICRP 37:1–332

    Google Scholar 

  14. Achenbach S, Ropers U, Kuettner A, et al (2008) Randomized comparison of 64-slice single- and dual-source computed tomography coronary angiography for the detection of coronary artery disease. JACC Cardiovasc Imaging 1:177–186

    Article  PubMed  Google Scholar 

  15. McCollough CH, Primak AN, Saba O, et al (2007) Dose performance of a 64-channel dual-source CT scanner. Radiol 243:775–784

    Article  Google Scholar 

  16. Ropers U, Ropers D, Pflederer T, et al (2007) Influence of heart rate on the diagnostic accuracy of dual-source computed tomography coronary angiography. J Am Coll Cardiol 50:2393–2398

    Article  PubMed  Google Scholar 

  17. Mori S, Nishizawa K, Kondo C, Ohno M, Akahane K, Endo M (2008) Effective doses in subjects undergoing computed tomography cardiac imaging with the 256-multi slice CT scanner. Eur J Radiol 65:442–448

    Article  PubMed  Google Scholar 

  18. Rybicki FJ, Otero HJ, Steigner ML, et al (2008) Initial evaluation of coronary images from 320-detector row computed tomography. Int J Cardiovasc Imaging 24:535–546

    Article  PubMed  Google Scholar 

  19. Hara AK, Paden RG, Silva AC, Kujak JL, Lawder HJ, Pavlicek W (2009) Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. AJR Am J Roentgenol 193:764–771

    Article  PubMed  Google Scholar 

  20. Leipsic J, Nguyen G, Brown J, Sin D, Mayo JR (2010) A prospective evaluation of dose reduction and image quality in chest CT using adaptive statistical iterative reconstruction. AJR Am J Roentgenol 195:1095–1099

    Article  PubMed  Google Scholar 

  21. Pontone G, Andreini D, Bartorelli AL, et al (2012) Feasibility and diagnostic accuracy of a low radiation exposure protocol for prospective ECG-triggering coronary MDCT angiography. Clin Radiol 67:207–215

    Article  PubMed  CAS  Google Scholar 

  22. Achenbach S, Marwan M, Schepis T, et al (2009) High-pitch spiral acquisition: a new scan mode for coronary CT angiography. J Cardiovasc Comput Tomogr 3:117–121

    Article  PubMed  Google Scholar 

  23. Husmann L, Valenta I, Gaemperli O, et al (2007) Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating. Eur Heart J 29:191–197

    Article  PubMed  Google Scholar 

  24. Maruyama T, Takada M, Hasuike T, Yoshikawa A, Namimatsu E, Yoshizumi T (2008) Radiation dose reduction and coronary accessability of prospective electrocardiogram-gated computed tomography coronary angiography: comparison with retrospective electrocardiogram-gated helical scan. J Am Coll Cardiol 52:1450–1455

    Article  PubMed  Google Scholar 

  25. Pontone G, Andreini D, Bartorelli AL, et al (2009) Diagnostic accuracy of coronary computed tomography angiography: a comparison between prospective and retrospective electrocardiogram triggering. J Am Coll Cardiol 54:346–355

    Article  PubMed  Google Scholar 

  26. Paul JF, Abada HT (2007) Strategies for reduction of radiation dose in cardiac multi slice CT. Eur Radiol 17:2028–2037

    Article  PubMed  Google Scholar 

  27. Hausleiter J, Meyer T, Hermann F, et al (2009) Estimated radiation dose associated with cardiac CT angiography. JAMA 301:500–507

    Article  PubMed  CAS  Google Scholar 

  28. Bischoff B, Hein F, Meyer T, Hadamitzky M, Martinoff S, Schömig A, Hausleiter J (2009) Impact of a reduced tube voltage on CT angiography and radiation dose: results of the Protection I study. JACC Cardiovasc Imaging 2:940–946

    Article  PubMed  Google Scholar 

  29. Hausleiter J, Martinoff S, Hadamitzky M, et al (2010) Image quality and radiation exposure with a low tube voltage protocol for coronary CT angiography results of the Protection II Trial. JACC Cardiovasc Imaging 3:1113–1123

    Article  PubMed  Google Scholar 

  30. Herzog BA, Husmann L, Burkhard N, et al (2008) Accuracy of low-dose computed tomography coronary angiography using prospective electrocardiogram-triggering: first clinical experience. Eur Heart J 29:3037–3042

    Article  PubMed  Google Scholar 

  31. Labounty TM, Leipsic J, Min JK, Heilbron B, Mancini GB, Lin FY, Earls JP (2010) Effect of padding duration on radiation dose and image interpretation in prospectively ECG-triggered coronary CT angiography. AJR Am J Roentgenol 194:933–937

    Article  PubMed  Google Scholar 

  32. Hausleiter J, Meyer TS, Martuscelli E, et al (2012) Image quality and radiation exposure with prospectively ECG-triggered axial scanning for coronary CT angiography: the multicenter, multivendor, randomized Protection-III study. JACC Cardiovasc Imaging 5:484–493

    Article  PubMed  Google Scholar 

  33. Fang XM, Chen HW, Hu XY, et al (2010) Dual-source CT coronary angiography without heart rate or rhythm control in comparison with conventional coronary angiography. Int J Cardiovasc Imaging 26:323–331

    Article  PubMed  Google Scholar 

  34. Stolzmann P, Goetti R, Baumueller S, et al (2011) Prospective and retrospective ECG-gating for CT coronary angiography perform similarly accurate at low heart rates. Eur J Radiol 79:85–91

    Article  PubMed  Google Scholar 

  35. Dewey M, Zimmermann E, Deissenrieder F, et al (2009) Non invasive coronary angiography by 320-row computed tomography with lower radiation exposure and maintained diagnostic accuracy: comparison of results with cardiac catheterization in a head-to-head pilot investigation. Circulation 120:867–875

    Article  PubMed  Google Scholar 

  36. Sabarudin AJ (2012) A systematic review of radiation dose associated with different generations of multidetector CT coronary angiography. J Med Imaging Radiat Oncol 56:5–17

    Article  PubMed  Google Scholar 

  37. Raff GL, Chinnaiyan KM, Share DA, et al (2009) Advanced cardiovascular imaging consortium co-investigators. Radiation dose from cardiac computed tomography before and after implementation of radiation dose-reduction techniques. JAMA 301:2340–2348

    Article  PubMed  CAS  Google Scholar 

  38. LaBounty TM, Earls JP, Leipsic J, et al (2010) Effect of a standardized quality-improvement protocol on radiation dose in coronary computed tomographic angiography. Am J Cardiol 106:1663–1667

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Pontone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Italia

About this chapter

Cite this chapter

Pontone, G. (2013). How to Reduce the Radiation Burden in Cardiac CT. In: Marzullo, P., Mariani, G. (eds) From Basic Cardiac Imaging to Image Fusion. Springer, Milano. https://doi.org/10.1007/978-88-470-2760-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2760-2_5

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2759-6

  • Online ISBN: 978-88-470-2760-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics