Skip to main content

Abstract

Maize (Zea mays ssp. mays) originated in Mexico and Central America and belongs to the tribe Maydae of the family Poaceae. It possesses over 32,000 genes on ten chromosomes with a genome size of 2.3 gigabase. Among various theories, teosinte (Z. mays ssp. parviglumis) is the most likely progenitor of maize. Genetic loci such as teosinte branched 1 (tb1) and teosinte glume architecture 1 (tga1) have played pivotal role in transforming teosinte to modern maize. From the centre of origin, maize later diffused to different parts of the world including America, Europe, Africa and Asia. Genetic resources especially wild relatives and landraces harbour novel alleles/genes for imparting resistance/tolerance to several biotic/abiotic stresses and improvement of productivity and nutritional quality traits. Among wild relatives, teosintes and Tripsacum are native to Mexico and Central America, while Coix, Chionachne, Sclerachne, Trilobachne and Polytoca originated in Southeast Asia. Cross compatibility between maize and teosinte generates hybrids, although the extent of success depends on teosinte species. While generation of crosses between maize and Tripsacum species is difficult, Asiatic genera possess high degree of cross incompatibility with maize. Several factors or loci that regulate cross compatibility between different genera or species have been identified and play pivotal role in introgression of genes from wild relatives. Landrace accessions possessing unexplored alleles/genes serve as valuable donors for important traits. The chapter deals with different theories of maize origin and recent understanding on diffusion of maize worldwide, besides providing classifications of wild relatives and their cross compatibility with maize. The importance of wild relatives and maize landrace accessions in providing valuable genes for various important traits has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allard RW (1960) Principles of plant breeding. Wiley, New York, pp 485

    Google Scholar 

  • Amusan IO, Rich PJ, Menkir A, Housley T, Ejeta G (2008) Resistance to Striga hermonthica in a maize inbred line derived from Zea diploperennis. New Phytol 178:157–166

    Article  PubMed  Google Scholar 

  • Arnason JT, Baum B, Gale J et al (1994) Variation in resistance of Mexican landraces of maize to maize weevil Sitophilus zeamais, in relation to taxonomic and biochemical parameters. Euphytica 74:227–236

    Article  Google Scholar 

  • Arora R (1977) Job’s-tears (Coix lacryma-jobi) – a minor food and fodder crop of North Eastern India. Econ Bot 31:358–366

    Article  Google Scholar 

  • Barcaccia G, Lucchin M, Parriani P (2003) Characterization of flint maize (Zea mays var. indurata) Italian landraces, II. Genetic diversity and relatedness assessed by SSR and Inter-SSR molecular markers. Genet Resour Crop Evol 50:253–271

    Article  CAS  Google Scholar 

  • Beadle GW (1939) Teosinte and the origin of maize. J Hered 30:245–247

    Google Scholar 

  • Beadle GW (1972) The mystery of maize. Chicago. Field Mus Nat Hist Bull 43:2–11

    Google Scholar 

  • Beadle GW (1978) Teosinte and the origin of maize. In: Walden DB (ed) Maize breeding and genetics. Wiley, New York, pp 113–128

    Google Scholar 

  • Bennetzen JE, Buckler V, Chandler J et al (2001) Genetic evidence and the origin of maize. Lat Am Antiq 12:84–86

    Article  Google Scholar 

  • Bergquist RR (1979) Selection for disease resistance in a maize breeding programme. II. Introgression of an alien genome from Tripsacum dactyloides conditioning resistance in Zea mays. Proceedings of the tenth meeting of the Maize and Sorghum Section of Eucarpia, Varna, Bulgaria, pp 200–206

    Google Scholar 

  • Bergquist RR (1981) Transfer from Tripsacum dactyloides to corn of a major gene locus conditioning resistance to Puccinia sorghi. Phytopathology 71:518–520

    Article  Google Scholar 

  • Bernard S, Jewell DC (1985) Crossing maize with Sorghum, Tripsacum, and millet: the products and their level of development following pollination. Theor Appl Genet 70:474–483

    Article  CAS  PubMed  Google Scholar 

  • Berthaud J, Savidan Y, Barre M, Leblanc O (1995) Tripsacum: its diversity and conservation. In: Taba S (ed) Maize genetic resources. Maize program special report, Mexico DF, CIMMYT, pp 74–85

    Google Scholar 

  • Bhat KV, Chandel KPS, Shivakumar TM, Sachan JKS (1998) Isozyme diversity in Indian primitive maize landraces. J Plant Biochem Biotechnol 7:23–27

    Article  CAS  Google Scholar 

  • Bor NL (1960) The grasses of Burma, Ceylon, India and Pakistan. Pergamon Press, Oxford, pp 767

    Google Scholar 

  • Bouis H, Hotz C, McClafferty B, Meenakshi JV, Pfeiffer W (2011) Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull 32:S31–S40

    Article  PubMed  Google Scholar 

  • Brink RA, Cooper DC (1940) Double fertilization and development of the seed in angiosperms. Bot Gaz 102:1–25

    Article  Google Scholar 

  • Cai Z, Liu H, He Q et al (2014) Differential genome evolution and speciation of Coix lacryma-jobi L. and Coix aquatica Roxb. hybrid guangxi revealed by repetitive sequence analysis and fine karyotyping. BMC Genom 15:1025. doi:10.1186/1471-2164-15-1025

    Article  CAS  Google Scholar 

  • Cairns JE, Crossa J, Zaidi PH et al (2013) Identification of drought, heat, and combined drought and heat tolerant donors in maize. Crop Sci 53:1335–1346

    Article  Google Scholar 

  • Camacho Villa TC, Maxted N, Scholten M, Ford-Lloyd B (2005) Defining and identifying crop landraces. Plant Genet Resour 3:373–384

    Article  Google Scholar 

  • Carvalho VP, Ruas CF, Ferreira JM, Moreira RMP, Ruas PM (2004) Genetic diversity among maize (Zea mays L.) landraces assessed by RAPD markers. Genet Mol Biol 27:228–236

    Article  CAS  Google Scholar 

  • Chaganti RSK (1965) Cytogenetic studies of maize-Tripsacum hybrids and their derivatives. The Bussey Institute, Harvard University, Cambridge, MA, pp 1–93

    Google Scholar 

  • Chaudhary HK, Kaila V, Rather SA (2014) Maize. In: Pratap A, Kumar J (eds) Alien gene transfer in crop plants, vol 2, Achievements and impacts. Springer, New York, pp 27–50. doi:10.1007/978-1-4614-9572-7_2

    Google Scholar 

  • Chavan S, Smith SM (2014) A rapid and efficient method for assessing pathogenicity of Ustilago maydis on maize and teosinte lines. J Vis Exp 83, e50712. doi:10.3791/50712

    PubMed  Google Scholar 

  • Cohen JI, Gallinat WC (1984) Potential use of alien germplasm for maize improvement. Crop Sci 24:1011–1015

    Article  Google Scholar 

  • Cooper DC, Brink RA (1942) The endosperm as a barrier to interspecific hybridization in flowering plants. Science 95:75–76

    Article  CAS  PubMed  Google Scholar 

  • Cubas P, Lauter N, Doebley J, Coen E (1999) The TCP domain: a motif found in proteins regulating plant growth and development. Plant J 18:215–222

    Article  CAS  PubMed  Google Scholar 

  • Dhawan NL (1964) Primitive maize in Sikkim. Maize Genet Coop Newsl 38:67–70

    Google Scholar 

  • Doebley JF (2001) George Beadle’s other hypothesis: one-gene, one-trait. Genetics 158:487–493

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doebley J (2004) The genetics of maize evolution. Ann Rev Genet 38:37–59

    Article  CAS  PubMed  Google Scholar 

  • Doebley JF, Stec A (1991) Genetic analysis of the morphological differences between maize and teosinte. Genetics 129:285–295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doebley JF, Stec A (1993) Inheritance of the morphological differences between maize and teosinte: comparison of results for two F2 populations. Genetics 134:559–570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doebley JF, Bacigalupo A, Stec A (1994) Inheritance of kernel weight in two maize-teosinte hybrid populations: implications for crop evolution. J Hered 85:191–195

    Google Scholar 

  • Doebley JF, Stec A, Gustus C (1995) Teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141:333–346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488

    Article  CAS  PubMed  Google Scholar 

  • Dorweiler J, Doebley JF (1997) Developmental analysis of teosinte glume architecture1: a key locus in the evolution of maize (Poaceae). Am J Bot 87:1313–1322

    Article  Google Scholar 

  • Dorweiler J, Stec A, Kermicle J, Doebley J (1993) Teosinte glume architecture1: a genetic locus controlling a key step in maize evolution. Science 262:233–235

    Article  CAS  PubMed  Google Scholar 

  • Dresselhaus T, Franklin-Tong N (2013) Male–female cross-talk during pollen germination, tube growth and guidance, and double fertilization. Mol Plant 6:1018–1036

    Article  CAS  PubMed  Google Scholar 

  • Dresselhaus T, Lausser A, Marton ML (2011) Using maize as a model to study pollen tube growth and guidance, cross-incompatibility and sperm delivery in grasses. Ann Bot 108:727–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan TL, Mu JY, Tong QL, Rong TZ, Wang P (2008) Sexual incompatibility between maize and its wild relatives Tripsacum L. and Coix L. Acta Agron Sin 34:1656–1661

    Article  Google Scholar 

  • Dubreuil P, Warburton M, Chastanet M, Hoisington D, Charcosset A (2006) More on the introduction of temperate maize into Europe: large-scale bulk SSR genotyping and new historical elements. Maydica 51:281–291

    Google Scholar 

  • Eagles HA, Lothrop JE (1994) Highland maize from central Mexico: its origin, characteristics, and use in breeding programs. Crop Sci 34:11–19

    Article  Google Scholar 

  • Edmeades GO, Banziger M, Beck D, Bolanos J (1996) Development and per se performance of CIMMYT maize populations as drought tolerant sources. In: Edmeades G et al (eds) Developing drought- and low N-tolerant maize. Proceedings of a symposium, CIMMYT, Mexico, March 25–29, 1996, pp 254–262

    Google Scholar 

  • Ellstrand NC, Garner LC, Hegde S, Guadagnuolo R, Blancas L (2007) Spontaneous hybridization between maize and teosinte. J Hered 98:183–187

    Article  CAS  PubMed  Google Scholar 

  • Eubanks MW (1995) A cross between two maize relatives: Tripsacum dactyloides and Zea diploperennis. Econ Bot 49:172–182

    Article  Google Scholar 

  • Eubanks MW (1997) Molecular analysis of crosses between Tripsacum dactyloides and Zea diploperennis (Poaceae). Theor Appl Genet 94:707–712

    Article  CAS  Google Scholar 

  • Eubanks MW (2001) The mysterious origin of maize. Econ Bot 55:492–514

    Article  Google Scholar 

  • Eubanks MW (2002) Investigation of novel genetic resource for rootworm resistance in corn. In: NSF (ed) Proceedings of the NSF design, service and manufacturing conference. Iowa State University, San Juan, pp 2544–2550

    Google Scholar 

  • Eubanks MW (2006) A genetic bridge to utilize Tripsacum germplasm in maize improvement. Maydica 51:315–327

    Google Scholar 

  • Evans MMS, Kermicle JL (2001) Teosinte crossing barrier1, a locus governing hybridization of teosinte with maize. Theor Appl Genet 103:259–265

    Article  CAS  Google Scholar 

  • FAO (1998) The state of the world’s plant genetic resources for food and agriculture. FAO, Rome

    Google Scholar 

  • FAOSTAT (2013) http://faostat.fao.org

  • Findley WR, Nault LR, Styer WE, Gordon DT (1983) Inheritance of maize chlorotic dwarf virus resistance in maize × Zea diploperennis backcrosses. Maize Newsl 56:165–166

    Google Scholar 

  • Fukunaga K, Hill J, Vigouroux Y et al (2005) Genetic diversity and population structure of teosinte. Genetics 169:2241–2254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galinat WC (1973) Intergenomic mapping of maize, teosinte and Tripsacum. Evolution 27:644–655

    Article  Google Scholar 

  • Galinat WC (1988) The origin of corn. In: Sprague GF, Dudley JW (eds) Corn and corn improvement, agronomy monographs no. 18. American Society of Agronomy, Madison, WI, pp 1–31

    Google Scholar 

  • Gouesnard B, Rebourg C, Welcker C, Charcosset A (2002) Analysis of photoperiod sensitivity within a collection of tropical maize populations. Genet Resour Crop Evol 49:471–481

    Article  Google Scholar 

  • Gupta HS, Hossain F, Muthusamy V (2015a) Biofortification of maize: an Indian perspective. Indian J Genet 75:1–22

    Google Scholar 

  • Gupta HS, Hossain F, Nepolean T, Vignesh M, Mallikarjuna MG (2015b) Understanding genetic and molecular bases of Fe and Zn accumulation towards development of micronutrient-enriched maize. In: Rakshit A et al. (eds) Nutrient use efficiency: from basics to advances. Springer, New Delhi, pp 255–282. doi:10.1007/978-81-322-2169-2_17

    Google Scholar 

  • Gupta HS, Hossain F, Muthusamy V (2015c) Development of biofortified maize through molecular breeding. ISB News Report, Virginia Polytechnic Institute and State University, Blacksburg, pp 1–5

    Google Scholar 

  • Gutierrez-Marcos JF, Pennington PD, Costa LM, Dickinson HG (2003) Imprinting in the endosperm: a possible role in preventing wide hybridization. Philos Trans R Soc Lond 358:1105–1111

    Article  CAS  Google Scholar 

  • Harlan JR, de Wet JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20:509–517

    Article  Google Scholar 

  • Hernard JT (1931) A contribution to the knowledge or Indian Maydeae. Meded Rijks Herb Leiden 67:1–17

    Google Scholar 

  • Heslop-Harrison J (1982) Pollen–stigma interaction and cross incompatibility in the grasses. Science 215:1358–1364

    Article  CAS  PubMed  Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y (1982) The pollen–stigma interaction in the grasses. 3. Features of the self-incompatibility response. Acta Bot Neerl 31:307–319

    Article  Google Scholar 

  • Hogenboom NG (1973) A model for incongruity in intimate partner relationships. Euphytica 22:229–233

    Article  Google Scholar 

  • Hoisington D, Khairallah M, Reeves T, Ribaut JM, Skovmand B, Taba S, Warburton M (1999) Plant genetic resources: what can they contribute toward increased crop productivity? Proc Natl Acad Sci U S A 96:5937–5943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hooker AL, Perkins JL (1980) Helminthosporium leaf blights of corn the state of the art. Proc Ann Corn Sorghum Res Conf 35:68–87

    Google Scholar 

  • Hore DK, Rathi RS (2007) Characterization of job’s tears germplasm in North-East India. Nat Prod Radiance 6:50–54

    Google Scholar 

  • House LR, Nelson OE (1958) Tracer study of pollen-tube growth in cross-sterile maize. J Hered 49:18–21

    Google Scholar 

  • Iltis HH (1983) From teosinte to maize: the catastrophic sexual transmutation. Science 222:886–894

    Article  CAS  PubMed  Google Scholar 

  • Janaki-Ammal EK (1945) Chromosome Atlas of cultivated plants. In: Darlington CD, Janaki-Ammal EK (eds). Allen and Unwin Limited, London, pp 114

    Google Scholar 

  • Katiyar S, Sachan JKS (1992) Scanning electron microscopic studies of pollen grains in the tribe Maydeae. Maize Genet Coop Newsl 66:91–92

    Google Scholar 

  • Kermicle JL (2006) A selfish gene governing pollen-pistil compatibility confers reproductive isolation between maize relatives. Genetics 172:499–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kermicle JL, Evans MM (2010) The Zea mays sexual compatibility gene ga2: naturally occurring alleles, their distribution, and role in reproductive isolation. J Hered 101:737–749

    Article  CAS  PubMed  Google Scholar 

  • Kindiger B (1993) Aberrant microspore development in hybrids of maize × Tripsacum dactyloides. Genome 36:987–997

    Article  CAS  PubMed  Google Scholar 

  • Kindiger B, Beckett JB (1992) Popcorn germplasm as a parental source for maize × Tripsacum dactyloides hybridization. Maydica 37:245–249

    Google Scholar 

  • Kindiger B, Sokolov V, Khatypova JV (1996) Evaluation of apomictic reproduction in a set of 39 chromosome maize-Tripsacum backcross hybrids. Crop Sci 36:1108–1113

    Article  Google Scholar 

  • Kumar H (2002) Resistance in maize to the larger grain borer, Prostephanus truncates (Horn) (Coleoptera: Bostrichidae). J Stored Prod Res 38:267–280

    Article  Google Scholar 

  • Lane JA, Child DV, Moore THM, Arnold GM, Bailey JA (1997) Phenotypic characterization of resistance in Zea diploperennis to Striga. Maydica 42:45–51

    Google Scholar 

  • Lausser A, Dresselhaus T (2010) Sporophytic control of pollen tube growth and guidance in grasses. Biochem Soc Trans 38:631–634

    Article  CAS  PubMed  Google Scholar 

  • Lausser A, Kliwer I, Srilunchang KO, Dresselhaus T (2010) Sporophytic control of pollen tube growth and guidance in maize. J Exp Bot 61:673–682

    Article  CAS  PubMed  Google Scholar 

  • Lauter N, Doebley J (2002) Genetic variation for phenotypically invariant traits detected in teosinte: implications for the evolution of novel forms. Genetics 160:333–342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leblanc O, Grimanelll D, Gonzalez de Leon D, Savidan Y (1995) Detection of the apomictic mode of reproduction in maize-Tripsacum hybrids using maize RFLP markers. Theor Appl Genet 90:1198–1203

    Article  CAS  PubMed  Google Scholar 

  • Leblanc O, Grimanelli D, Islam-Faridi N, Berthaud J, Savidan Y (1996) Reproductive behavior in maize-Tripsacum polyhaploid plants: implications for the transfer of apomixis into maize. J Hered 87:108–111

    Article  Google Scholar 

  • Lu Y, Kermicle JL, Evans MMS (2014) Genetic and cellular analysis of cross-incompatibility in Zea mays. Plant Reprod 27:19–29

    Article  CAS  PubMed  Google Scholar 

  • Mangelsdorf PC (1974) Corn: its origin, evolution and improvement. Harvard University Press, Cambridge, MA

    Book  Google Scholar 

  • Mangelsdorf PC, Reeves RG (1931) Hybridization of maize, Tripsacum, and Euchlaena. J Hered 22:339–343

    Google Scholar 

  • Mangelsdorf PC, Reeves RG (1938) The origin of maize. Proc Natl Acad Sci U S A 24:303–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mangelsdorf PC, Reeves RG (1939) The origin of Indian corn and its relatives. Texas AES Bull 574:1–315

    Google Scholar 

  • Mano Y, Omori F (2007) Breeding for flooding tolerant maize using “teosinte” as a germplasm resource. Plant Root 1:17–21

    Article  CAS  Google Scholar 

  • Mano Y, Omori F (2013) Flooding tolerance in interspecific introgression lines containing chromosome segments from teosinte (Zea nicaraguensis) in maize (Zea mays ssp. mays). Ann Bot 112:1125–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mano Y, Muraki M, Fujimori M, Takamizo T, Kindiger B (2005) Identification of QTL controlling adventitious root formation during flooding conditions in teosinte (Zea mays ssp. huehuetenangensis) seedlings. Euphytica 142:33–42

    Article  Google Scholar 

  • Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez GJ, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci U S A 99:6080–6084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maxted N, Ford-Lloyd BV, Jury SL, Kell SP, Scholten MA (2006) Towards a definition of a crop wild relative. Bio Con 15:2673–2685

    Article  Google Scholar 

  • Menkir A (2006) Assessment of reactions of diverse maize inbred lines to Striga hermonthica (Del) Benth. Plant Breed 125:131–139

    Article  Google Scholar 

  • Metcalfe SE (2006) Late quaternary environments of the northern deserts and central transvolcanic belt of Mexico. Ann Mo Bot Gard 93:258–273

    Article  Google Scholar 

  • Mir C, Zerjal T, Combes V et al (2013) Out of America: tracing the genetic footprints of the global diffusion of maize. Theor Appl Genet 126:2671–2682

    Article  CAS  PubMed  Google Scholar 

  • Molin D, Coelho CJ, Maximo DS, Ferreira FS, Gardingo JR, Matiello RR (2013) Genetic diversity in the germplasm of tropical maize landraces determined using molecular markers. Genet Mol Res 12:99–114

    Article  CAS  PubMed  Google Scholar 

  • Nelson OE (1952) Non-reciprocal cross-sterility in maize. Genetics 37:101–124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nirodi N (1955) Studies on Asiatic relatives of maize. Ann Missouri Bot Gard 42:103–130

    Article  Google Scholar 

  • Oppong A, Bedoya CA, Ewool MB et al (2014) Bulk genetic characterization of Ghanaian maize landraces using microsatellite markers. Maydica 59:1–8

    Google Scholar 

  • Ott OO (2008) The search for novel resistance alleles: screening teosinte-maize introgression lines for resistance to northern leaf blight. PhD thesis submitted to the College of Agriculture and Life Sciences, Cornell University, US, pp 1–26

    Google Scholar 

  • Ottoboni LM, Leite A, Targon MLN, Crozier A, Arruda P (1990) Characterization of the storage protein in seed of Coix lacryma-jobi var. Adlay. J Agric Food Chem 38:631–635

    Article  CAS  Google Scholar 

  • Oxford English Dictionary (2015) Online Edition © Oxford University Press

    Google Scholar 

  • Pasztor K, Borsos O (1990) Inheritance and chemical composition in inbred maize (Zea mays L.) × teosinte (Zea mays ssp. mexicana (Schrader) Iltis) hybrids. Crop Prod 39:193–213

    CAS  Google Scholar 

  • Pesqueira J, Garcia MD, Mollina MC (2003) NaCl tolerance in maize (Zea mays ssp. mays) x Tripsacum dactyloides L. hybrid calli and regenerated plants. Spanish J Agril Res 1:59–63

    Article  Google Scholar 

  • Pesqueira J, Garcia MD, Staltari S, Mollina MC (2006) NaCl effects in Zea mays L. × Tripsacum dactyloides L. hybrid calli and plants. Electron J Biotechnol 9:286–290

    Article  CAS  Google Scholar 

  • Petrov DF (1984) Apomixis and its role in evolution and breeding. Oxonian Press, New Delhi, pp 267

    Google Scholar 

  • Piperno DR (2003) A few kernels short of a cob: on the Staller and Thompson late entry scenario for the introduction of maize into northern South America. J Archaeol Sci 30:831–836

    Article  Google Scholar 

  • Piperno DR, Moreno JE, Iriarte J et al (2007) Late Pleistocene and Holocene environmental history of the Iguala valley, central Balsas watershed of Mexico. Proc Natl Acad Sci U S A 104:11874–11881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piperno DR, Ranere AJ, Holst I, Iriarte J, Dickau R (2009) Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Central Balsas river valley, Mexico. Proc Natl Acad Sci U S A 106:5019–5024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasanna BM (2010) Phenotypic and molecular diversity of maize landraces: characterization and utilization. Indian J Genet 70:315–327

    Google Scholar 

  • Prasanna BM (2012) Diversity in global maize germplasm: characterization and utilization. J Biosci 37:843–855

    Article  CAS  PubMed  Google Scholar 

  • Prasanna BM (2014) Maize research-for-development scenario: challenges and opportunities for Asia. In: Prasanna BM et al (eds) 12th Asian maize conference and expert consultation on maize for food, feed and nutritional security, book of extended summaries, 30 October–01 November, Bangkok, Thailand, pp 2–11

    Google Scholar 

  • Prischmann DA, Dashiell KE, Schneider DJ, Eubanks MW (2009) Evaluating Tripsacum introgressed maize germplasm after infestation with western corn rootworms (Coleoptera: Chrysomelidae). J Appl Entomol 133:10–20

    Article  Google Scholar 

  • Purseglove JW (1972) Tropical crops: monocotyledons 1. Longman Group Limited, London

    Google Scholar 

  • Qi-Lun Y, Ping F, Kang K-C, Guang-Tang P (2008) Genetic diversity based on SSR markers in maize (Zea mays L.) landraces from Wuling mountain region in China. J Genet 87:287–291

    Article  PubMed  Google Scholar 

  • Ramirez DA (1997) Gene introgression in maize (Zea mays ssp. mays L.). Philipp J Crop Sci 22:51–63

    Google Scholar 

  • Ray JD, Kindiger B, Sinclair TR (1999) Introgressing root aerenchyma into maize. Maydica 44:113–117

    Google Scholar 

  • Rebourg C, Chastanet M, Gouesnard B, Welcker C, Dubreuil P, Charcosset A (2003) Maize introduction into Europe: the history reviewed in the light of molecular data. Theor Appl Genet 106:895–903

    CAS  PubMed  Google Scholar 

  • Rich PJ, Ejecta G (2008) Towards effective resistance to Striga in African maize. Plant Signal Behav 3:618–621

    Article  PubMed  PubMed Central  Google Scholar 

  • Rieseberg LH, Willis JH (2007) Plant speciation. Science 317:910–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez MG, Miguel-Chavez RS, Larque-Saavedra A (1998) Physiological aspects in Tuxpeno maize with improved drought tolerance. Maydica 43:137–141

    Google Scholar 

  • Roney J, Hard R (2009) The beginnings of maize agriculture. Archaeology Southwest 23:4–5

    Google Scholar 

  • Rosegrant MR, Ringler C, Sulser TB, Ewing M, Palazzo A, Zhu T (2009) Agriculture and food security under global change: prospects for 2025/2050. IFPRI, Washington, DC

    Google Scholar 

  • Sachan JKS, Sarkar KR (1982) Plant type of ‘Sikkim Primitives’. Maize Genet Coop Newsl 56:122–124

    Google Scholar 

  • Sachan JKS, Sarkar KR (1985) The present status of maydeae. Indian J Genet 45:480–491

    Google Scholar 

  • Sachan JKS, Sarkar KR (1986) Discovery of Sikkim Primitive precursor in the Americas. Maize Genet Coop Newsl 60:104–106

    Google Scholar 

  • Salhuana W, Pollak L (2006) Latin American Maize Project (LAMP) and Germplasm Enhancement of Maize (GEM) project: generating useful breeding germplasm. Maydica 51:339–356

    Google Scholar 

  • Salhuana W, Jones Q, Sevilla R (1991) The Latin American Maize Project: model for rescue and use of irreplaceable germplasm. Diversity 7:40–42

    Google Scholar 

  • Savidan Y, Berthaud J (1994) Maize × Tripsacum hybridization and the potential for apomixes transfer for maize improvement. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry 25. Springer, Berlin, pp 69–83

    Google Scholar 

  • Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Semagn K, Magorokosho C, Ogugo V, Makumbi D, Warburton ML (2014) Genetic relationships and structure among open-pollinated maize varieties adapted to eastern and southern Africa using microsatellite markers. Mol Breed 34:1423–1435

    Article  Google Scholar 

  • Sharma L, Prasanna BM, Ramesh B (2010) Phenotypic and microsatellite-based diversity and population genetic structure of maize landraces in India, especially from the north east Himalayan region. Genetica 138:619–631

    Article  CAS  PubMed  Google Scholar 

  • Shavrukov Y, Sokolov V (2015) Maize-gamagrass interspecific hybrid, Zea mays × Tripsacum dactyloides, shows better salinity tolerance and higher Na + exclusion than maize and sorghum. Int J Lat Res Sci Tech 4:128–133

    Google Scholar 

  • Shiferaw B, Prasanna BM, Hellin J, Banziger M (2011) Crops that feed the world. 6. Past successes and future challenges to the role played by maize in global food security. Food Sec 3:307–327

    Article  Google Scholar 

  • Sidorov FF, Shulakov IK (1962) Hybrids of maize and teosinte. Bul App Bot Genet Plant Breed 347:6–85

    Google Scholar 

  • Singode A, Prasanna BM (2010) Analysis of genetic diversity in the North Eastern Himalayan (NEH) maize landraces of India using microsatellite markers. J Plant Biochem Biotech 19:33–41

    Article  CAS  Google Scholar 

  • Stebbins GL (1958) The inviability, weakness and sterility of interspecific hybrids. Adv Genet 9:147–215

    CAS  PubMed  Google Scholar 

  • Studer A, Zhao Q, Ross-Ibarra J, Doebley J (2011) Identification of a functional transposon insertion in the maize domestication gene tb1. Nature 43:1160–1163

    CAS  Google Scholar 

  • van-Heerwaarden JV, Doebley J, Briggs WH, Glaubitz JC, Goodman MM, de Jesus Sanchez Gonzalez J, Ross-Ibarra J (2011) Genetic signals of origin, spread and introgression in a large sample of maize landraces. Proc Natl Acad Sci U S A 108:1088–1092

    Article  CAS  PubMed  Google Scholar 

  • Vann L, Kono T, Pyajarvi T, Hufford MB, Ross-Ibarra J (2015) Natural variation in teosinte at the domestication locus teosinte branched1 (tb1). Peer J 3, e900. doi:10.7717/peerj.900

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Venkateswarlu J, Chaganti RSK (1973) Job’s lears (Coix lacryma-jobi L.). ICAR Publication, New Delhi, pp 44

    Google Scholar 

  • Vielle-Calzada JP, de la Vega OM, Hernandez-Guzman G et al (2009) The palomero genome suggests metal effects on domestication. Science 326:1078. doi:10.1126/science.1178437

    Article  CAS  PubMed  Google Scholar 

  • Vigouroux Y, Glaubitz JC, Matsuoka Y, Goodman MM, Sanchez J, Doebley J (2008) Population structure and genetic diversity of new world maize landraces assessed by DNA Microsatellites. Am J Bot 95:1240–1253

    Article  PubMed  Google Scholar 

  • Vyssoulis GP, Karpanou EA, Papavassiliou MV, Belegrinos DA, Giannakopoulou AE, Toutouzas PK (2001) Side effects of antihypertensive treatment with ACE inhibitors. Am J Hypertens 14:114A–115A

    Article  Google Scholar 

  • Wang RL, Stec A, Hey J, Lukens L, Doebley J (1999) The limits of selection during maize domestication. Nature 398:236–239

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Nussbaum-Wagler T, Li B et al (2005) The origin of the naked grains of maize. Nature 436:714–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Xu C, Qu M, Zhang J (2008) Kernel amino acid composition and protein content of introgression lines from Zea mays ssp. mexicana into cultivated maize. Cereal Sci 48:387–393

    Article  CAS  Google Scholar 

  • Wang L, Qu M, Zhang X, Qiao Y (2014) Production of antihypertensive peptides by enzymatic zein hydrolysate from maize-Zea mays ssp. mexicana introgression line. Pak J Bot 46:1735–1740

    CAS  Google Scholar 

  • Warburton ML, Setimela P, Franco J et al (2010) Toward a cost-effective fingerprinting methodology to distinguish maize open-pollinated varieties. Crop Sci 50:1–11

    Article  Google Scholar 

  • Warburton ML, Wilkes G, Taba S et al (2011) Gene flow between different teosinte species and into the domesticated maize gene pool. Genet Resour Crop Evol 58:1243–1261

    Article  Google Scholar 

  • Wasala SK, Prasanna BM (2013) Microsatellite marker-based diversity and population genetic analysis of selected lowland and mid-altitude maize landrace accessions of India. J Plant Biochem Biotechnol 22:392–400

    Article  CAS  Google Scholar 

  • Watson L, Dallwitz MJ (1992) The grass genera of the World. CAB International, Oxon, pp 1038

    Google Scholar 

  • Watt G (1904) Coix spp. or Job’s-tears – a review of all available information. Agric, Ledger No. 13:513–553

    Google Scholar 

  • Wei WH, Zhao WP, Song YC, Liu LH, Guo LQ, Gu MG (2003) Genomic in situ hybridization analysis for identification of introgressed segments in alloplasmic lines from Zea mays × Zea diploperennis. Hereditas 138:21–26

    Article  PubMed  Google Scholar 

  • Wilkes HG (1967) Teosinte: the closest relative of maize. The Bussey Institute, Harvard University, Cambridge, MA

    Google Scholar 

  • Wilkes HG (1972) Maize and its wild relatives. Science 177:1071–1077

    Article  CAS  PubMed  Google Scholar 

  • Wilkes HG (1977) Hybridization of maize in Mexico and Guatemala and the improvement of maize. Econ Bot 31:254–293

    Article  Google Scholar 

  • Yallou CG, Menkir A, Adetimirin VO, Kling JG (2009) Combining ability of maize inbred lines containing genes from Zea diploperennis for resistance to Striga hermonthica (Del.) Benth. Plant Breed 128:143–148

    Article  Google Scholar 

  • Yanga Q, Lia Z, Lib W et al (2013) CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the post domestication spread of maize. Proc Natl Acad Sci U S A 110:16969–16974

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Firoz Hossain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Hossain, F. et al. (2016). Maize. In: Singh, M., Kumar, S. (eds) Broadening the Genetic Base of Grain Cereals. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3613-9_4

Download citation

Publish with us

Policies and ethics