Skip to main content
Log in

Analysis of Genetic Diversity in the North Eastern Himalayan Maize Landraces using Microsatellite Markers

  • Review Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Population DNA fingerprinting of 48 selected North Eastern Himalayan (NEH) landrace accessions was undertaken using 41 polymorphic fluorescent dye-labelled microsatellite/Simple Sequence Repeat (SSR) markers, using a DNA Sequencer. The analysis revealed a large number of SSR alleles (576), with high mean number of alleles per locus (13.8), and Polymorphism Information Content (PIC) of 0.63, reflecting the level of diversity in the NEH accessions and the informativeness of the SSR markers. The study also led to identification of 135 unique alleles, differentiating 44 out of the 48 accessions. Five highly frequent (major) SSR alleles (umc1545 80bp, phi062 162bp, umc1367 159bp, umc2250 152bp and phi112 152bp) were detected indicating that chromosomal regions harbouring these S SR alleles might not be selectively neutral. Analysis of population genetic parameters, including Wright’s F statistics, revealed high level of genetic differentiation, very low levels of inbreeding, and restricted gene flow between the NEH landraces. AMOVA (Analysis of Molecular Variance) showed that 67 per cent of the total variation in the accessions could be attributed to within-population diversity, and the rest between the accessions. Cluster analysis of SSR data using Rogers’ genetic distance and UPGMA, showed significant genetic diversity among the landraces from Sikkim. This is the first detailed study of SSR allele frequency-based analysis of genetic diversity in the NEH maize landraces of India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AMOVA:

Analysis of Molecular Variance

CIMMYT:

International Maize and Wheat Improvement Center

IML:

Indian Maize Landrace

NEH:

North Eastern Himalayan

PIC:

Polymorphism Information Content

SSR:

Simple Sequence Repeat

UPGMA:

Unweighted Pair Group Method using Arithmetic means

References

  1. CIMMYT, Maize seed industries revisited. emerging roles of the public and private sectors. World maize facts and trends 1993/94. CIMMYT, Mexico DF (1994).

    Google Scholar 

  2. Prasanna BM & Sharma L, Indian J Plant Genet Resour, 16 (2005) 155.

    Google Scholar 

  3. Dowswell CR, Paliwal RL & Cantrell RL, Maize in the Third World, Westview Press, USA (1996).

    Google Scholar 

  4. Grant UJ & Wellhausen EJ, A study of corn breeding and production in India, Ministry of Food and Agriculture, Govt. of India (1955).

    Google Scholar 

  5. Singh B, Races of maize in India, Indian Council of Agricultural Research (ICAR), New Delhi (1977).

    Google Scholar 

  6. Dhawan NL, Maize Genet Coop Newslett, 36 (1964) 69.

    Google Scholar 

  7. Sachan JKS, In Maize Genetics Perspectives (KR Sarkar, JKS Sachan, NN Singh, Editors), Indian Society of Genetics and Plant Breeding, New Delhi (1991) pp 16–34.

    Google Scholar 

  8. Bhat KV & Chandel KPS, J Plant Biochem Biotech, 7 (1998) 23.

    Article  CAS  Google Scholar 

  9. Prasanna BM, Singode A, Garg A & Kumar R, J Plant Biochem Biotech, 15 (2006) 85.

    Article  CAS  Google Scholar 

  10. Frankel OH, Brown ADH & Burdon JJ, The conservation of plant biodiversity, Cambridge Univ Press, Cambridge, England (1995).

    Google Scholar 

  11. Rebourg C, Gousnard B & Charcosset A, Heredity, 66 (2001) 574.

    Article  Google Scholar 

  12. Rebourg C, Chastanet M, Gouesnard B, Welcker C, Dubreuil P & Charcosset A, Theor Appl Genet, 106 (2003) 895.

    PubMed  CAS  Google Scholar 

  13. Warburton ML, Xianchun X, Franco J, Melchinger AE, Frisch M, Bohn M & Hoisington D, Crop Sci, 42 (2002) 1832.

    Article  Google Scholar 

  14. Dubreuil P, Warburton M, Chastanet M, Hoisington D & Charcosset A, Maydica, 51 (2006) 281.

    Google Scholar 

  15. Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S & Rafalski A, Mol Breed, 2 (1996) 225.

    Article  CAS  Google Scholar 

  16. Liu K & Muse SV, Bioinformatics, 21 (2005) 2128.

    Article  PubMed  CAS  Google Scholar 

  17. Excoffier L, Laval G & Schneider S, Evol Bioinformatics Online, 1 (2005) 47.

    CAS  Google Scholar 

  18. Wright S, Ann Eugen, 15 (1951) 323.

    Google Scholar 

  19. Rogers JS, In Studies in Genetics VII (JS Rogers, Editor). Publ 7213, University of Texas, Austin, Texas, USA (1972) pp 145–153.

    Google Scholar 

  20. Perrier X, Flori A & Bonnot F, In Genetic diversity of cultivated tropical plants (P Hannon et al, Editors), Science Publishers. Montpellier (2003) pp 43–76.

    Google Scholar 

  21. Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez GJ, Buckler E & Doebley JA, Proc Natl Acad Sci, USA, 99 (2002) 6080.

    Article  PubMed  CAS  Google Scholar 

  22. Ho JC, Kresovich S & Lamkey KR, Crop Sci, 45 (2005) 1891.

    Article  CAS  Google Scholar 

  23. Labate JA, Lamkey KR, Mitchell SE, Kresovich S, Sullivan H & Smith JSC, Crop Sci, 43 (2003) 80.

    Article  Google Scholar 

  24. Koskinen MT, Hirvonen H, Landry PA & Primmer CR, Hereditas, 141 (2004) 61.

    Article  PubMed  Google Scholar 

  25. Eschholz TW, Peter R, Stamp P & Hund A, Genet Resour Crop Evol (2008) DOI 10.1007/s10722-007-9304-8

    Google Scholar 

  26. Vigouroux Y, McMullen M, Hittinger CT, Houchins K, Schulz L, Kresovich S, Matsuoka Y & Doebley J, Proc Natl Acad Sci, USA, 99 (2002) 9650.

    Article  PubMed  CAS  Google Scholar 

  27. Henderson ST & Pates TD, Mol Cell Biol, 12 (1992) 2749.

    PubMed  CAS  Google Scholar 

  28. Prasanna BM, Vasal SK, Kassahun B & Singh NN, Curr Sci, 81 (2001) 1308.

    CAS  Google Scholar 

  29. Pasini L, Stile MR, Puja E, Valsecchi R, Francia P, Carletti G, Salamini F & Marocco A, Mol Breed, 22 (2008) 527.

    Article  CAS  Google Scholar 

  30. Chopra S, Cocciolone SM, Bushman S, Sangar V, McMullen MD & Peterson T, Genetics, 163 (2003) 1135.

    PubMed  CAS  Google Scholar 

  31. Gonzalez-Ugalde WG, Genetic characterisation of Northern Flints and Flours maize (Zea mays L. stop. mays) with isozyme, SSR and morphological markers. Dissertation Abstr. Int 58(11 B): 5706, Iowa State University, Ames, USA (1997).

    Google Scholar 

  32. Dreisigacker S, Zhang P, Warburton ML, Skovmand B, Hoisington D & Melchinger AE, Crop Sci, 45 (2005) 653.

    Article  CAS  Google Scholar 

  33. Reif JC, Melchinger AE & Frisch M, Crop Sci, 45 (2005) 1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Prasanna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singode, A., Prasanna, B.M. Analysis of Genetic Diversity in the North Eastern Himalayan Maize Landraces using Microsatellite Markers. J. Plant Biochem. Biotechnol. 19, 33–41 (2010). https://doi.org/10.1007/BF03323433

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03323433

Key words

Navigation