Skip to main content

Biofortified Wheat for Mitigating Malnutrition

  • Chapter
  • First Online:
Biofortification of Food Crops

Abstract

Zinc, iron, and provitamin A are the critical micronutrients required for structural and functional integrity of biological system. Their deficiency affects billions of people worldwide, by hampering growth and development and destroying the immune systems. Micronutrient-dense wheat (Triticum aestivum L.) varieties can be developed by using the existing genetic variability in the germplasm. Even with new screening tools such as gene discovery, marker-assisted selection, and precision phenotyping, selection of high-Zn genotypes would appear an easy task. Wide genetic variation available in primitive and wild relatives, landraces, and synthetic hexaploids is now being intensively exploited under HarvestPlus program to identify quantitative trait loci (QTLs) for enhancing concentration of Zn and its bioavailability in wheat grain. Further regulation of gene expression in identified QTLs in response to biotic and abiotic stresses is also analyzed. The ultimate goal of this program is to improve nutritional status of wheat cultivars. However, enhancement of Zn uptake through utilization of genetic variation would be possible only when the soil environment (i.e., mineral composition) has sufficient zinc pool for absorption. The varieties like BHU 1, BHU 17, and BHU 19 from India and NR 419, NR 420, and NR 421 from Pakistan show 4–10 ppm increase in grain zinc. Agronomic biofortification strategies through application of Zn-containing fertilizer provide an immediate and effective option to increase grain Zn concentration and productivity in wheat, particularly in areas of severe nutrient-deficient soil. Zn fertilizer can be used along with the pesticide used to control aphids or yellow rust in wheat. Fertilizer application strategies must be practical and economically feasible. However, in developing countries where resource-poor farmers cannot afford fertilizer, breeding for mineral density may remain the sole agricultural intervention to improve the nutritional content of staple crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Black RE, Lindsay HA, Bhutta ZA, Caulfield LE, De Onnis M, Ezzati M, Mathers C, Rivera J (2008) Maternal and child undernutrition: global and regional exposures and health consequences. Lancet 371:243–260

    Article  Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302:1–17

    Article  CAS  Google Scholar 

  • Cakmak I (2010) Biofortification of cereals with zinc and iron through fertilization strategy. In: 19th world congress of soil science, soil solutions for a changing world, Brisbane, 1–6 Aug 2010

    Google Scholar 

  • Cakmak I, Ozkan H, Braun HJ, Welch RM, Romheld V (2000) Zinc and iron concentrations in seeds of wild, primitive and modern wheats. Food Nutr Bull 21:401–403

    Article  Google Scholar 

  • Cakmak I, Kalayci M, Kaya Y, Torun AA, Aydin N, Wang Y, Arisoy Z, Erdem H, Yazici A, Gokmen O, Ozturk L, Horst WJ (2010a) Biofortification and localization of zinc in wheat grain. J Agric Food Chem 58:9092–9102

    Article  CAS  Google Scholar 

  • Cakmak I, Pfeiffer WH, McClafferty B (2010b) Biofortification of durum wheat with zinc and iron. Cereal Chem 87:10–20

    Article  CAS  Google Scholar 

  • Choi EY, Graham RD, Stangoulis JCR (2007) Rapid semiquantitative screening methods for determination of iron and zinc in grains and staple foods. J Food Compos Anal 20(6):496–505

    Article  CAS  Google Scholar 

  • Curie C, Cassin G, Couch D, Divol F, Higuchi K, Jean ML, Misson J, Schikora A, Czernic P, Mari S (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 103:1–11

    Article  CAS  Google Scholar 

  • Distelfeld A, Cakmak I, Peleg Z, Ozturk L, Yazici AM, Budak H (2007) Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations. Physiol Plant 129:635–643

    Article  CAS  Google Scholar 

  • Ekiz H, Bagci SA, Kiral AS, Eker S, Gultekin I, Alkan A, Cakmak I (1998) Effects of zinc fertilization and irrigation on grain yield and zinc concentration of various cereals grown in zinc-deficient calcareous soil. J Plant Nutr 21:2245–2256

    Article  CAS  Google Scholar 

  • Ficco DBM, Riefolo C, Nicastro G, De Simone V, Di Gesu AM, Beleggia R, Platani C, Cattivelli L, De Vita P (2009) Phytate and mineral elements concentration in a collection of Italian durum wheat cultivars. Field Crop Res 111:235–242

    Article  Google Scholar 

  • Fiel B, Moser S, Jampatong S, Stamp P (2005) Mineral composition of the grains of tropical maize varieties as affected by pre-anthesis drought and rate of nitrogen fertilization. Crop Sci 45:516–523

    Article  Google Scholar 

  • Garvin DF, Welch RM, Finlay JW (2006) Historical shifts in the seed mineral micronutrient concentration of U.S. hard red winter wheat germplasm. J Sci Food Agric 86:2213–2220

    Article  CAS  Google Scholar 

  • Genc Y, Verbyla AP, Torun AA, Cakmak I, Willsmore K, Wallwork H, McDonald GK (2009) Quantitative trait loci analysis of zinc efficiency and grain zinc concentration in wheat using whole genome average interval mapping. Plant Soil 314:49–66

    Article  CAS  Google Scholar 

  • Gomez-Becerra HF, Erdem H, Yazici A, Tutus Y, Torun B, Ozturk L, Cakmak I (2010) Grain concentrations of protein and mineral nutrients in a large collection of spelt wheat grown under different environments. J Cereal Sci 52:342–349

    Article  CAS  Google Scholar 

  • Graham RD, Ascher JS, Hynes SC (1992) Selection of zinc-efficient cereal genotypes for soils of low zinc status. Plant Soil 146:241–250

    Article  CAS  Google Scholar 

  • Graham RD, Welch RM, Saunders DA, Monasterio I, Bouis HE, Bonierbale M, De Hann S, Burgos G, Thiele G, Liria R, Meisner CA, Beebe SE, Potts MJ, Kadiajn M, Hobbs PR, Gupta RK, Twomlow S (2007) Nutritious subsistence food systems. Adv Agron 92:1–74

    Article  CAS  Google Scholar 

  • Guttieri M, Bowen D, Dorsh JA, Raboy V, Souza E (2004) Identification and characterization of low phytic acid wheat. Crop Sci 44:418–424

    Article  CAS  Google Scholar 

  • Harvest Plus (2014) Biofortification progress briefs August 2014. www.HarvestPlus.org

  • Haydon MJ, Cobbett CS (2007) Transporters of ligands for essential metal ions in plants. New Phytol 174:499–506

    Article  CAS  Google Scholar 

  • Hess SY, Thurnham DI, Hurrell RF (2005) Influence of provitamin A carotenoids on iron, zinc and vitamin A status, vol 6, HarvestPlus technical monograph. International Food Policy Research Institute (IFPRI)/International Center for Tropical Agriculture (CIAT), Washington, DC

    Google Scholar 

  • Huynh B, Palmer L, Mather DE, Wallwork H, Graham RD, Welch RM, Stangoulis JCR (2008) Genotypic variation in wheat grain fructan content revealed by a simplified HPLC method. J Cereal Sci 48:369–378

    Article  CAS  Google Scholar 

  • Joshi AK, Crossa I, Arun B, Chand R, Trethowan R, Vargas M, Ortiz-Monasterio I (2010) Genotype × environment interaction for zinc and iron concentration of wheat grain in eastern Gangetic plains of India. Field Crop Res 116:268–277

    Article  Google Scholar 

  • Kapil U, Jain K (2011) Magnitude of zinc deficiency amongst under five children in India. Indian J Pediatr 89:1069–1072

    Article  Google Scholar 

  • Karim MR, Zhang YQ, Zhao RR, Chen XP, Zhang FS, Zou CQ (2012) Alleviation of drought stress in winter wheat by late foliar application of zinc, boron, and manganese. J Plant Nutr Soil Sci 175:142–151

    Article  Google Scholar 

  • Kutman UB, Yildiz B, Cakmak I (2011) Improved nitrogen status enhances zinc and iron concentrations both in the whole grain and the endosperm fraction of wheat. J Cereal Sci 53:118–125

    Article  CAS  Google Scholar 

  • Leenhardt F, Lyan B, Rock Boussard A, Potus J, Chanliaud E, Remesy C (2006) Genetic variability of carotenoid concentration, and lipoxygenase and peroxidase activities among cultivated wheat species and bread wheat varieties. Eur J Agron 25:170–176

    Article  CAS  Google Scholar 

  • Liu Z (1996) Micronutrients in soils of China. Jiangsu Science and Technology Publishing House, Nanjing

    Google Scholar 

  • Liu S, Mo X, Lin Z, Xu Y, Ji J, Wen G, Richey J (2010) Crop yield responses to climate change in the Huang-Huai-Hai plain of China. Agric Water Manage 97:1195–1209

    Article  Google Scholar 

  • Monasterio JI, Graham RD (2000) Breeding for trace minerals in wheat. Food Nutr Bull 21:393–396

    Article  Google Scholar 

  • Morgounov A, Gómez-Becerra HF, Abugalieva A, Dzhunusova M, Yessimbekova M, Muminjanov H, Zelenskiy Y, Ozturk L, Cakmak I (2007) Iron and zinc grain density in common wheat grown in Central Asia. Euphytica 155:193–203

    Article  Google Scholar 

  • Ortiz-Monasterio I, Palacios-Rojas N, Meng E, Pixley K, Trethowan R, Pena RJ (2007) Enhancing the mineral and vitamin content of wheat and maize through plant breeding. J Cereal Sci 46:293–307

    Article  CAS  Google Scholar 

  • Osborne B, Fearn T (1986) Near infrared spectroscopy in food analysis. Wiley, New York

    Google Scholar 

  • Oury FX, Leenhardt F, Remesy C, Chanliaud E, Duperrier B, Balfourier F, Charmet G (2006) Genetic variability and stability of grain magnesium, zinc and iron concentration in bread wheat. Eur J Agron 25:177–185

    Article  CAS  Google Scholar 

  • Peleg Z, Cakmak I, Ozturk L, Yazici A, Jun Y, Budak H, Korol AB, Fahima T, Saranga Y (2009) Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat × wild emmer wheat RIL population. Theor Appl Genet 119:353–369

    Article  CAS  Google Scholar 

  • Ram S, Verma A, Sharma S (2010) Large variability exits in phytase levels among Indian wheat varieties and synthetic hexaploids. J Cereal Sci 52:486–490

    Article  CAS  Google Scholar 

  • Ram H, Singh S, Singh S, Sohu VS, Dhaliwal SS, Mavi GS, Cakmak I (2013) Use of foliar zinc sulfate fertilizer with pesticides for enriching zinc in wheat grains in India. In: XVII international plant nutrition colloquium held at the Istanbul, 19–22 Aug 2013

    Google Scholar 

  • Ram H, Sohu VS, Cakmak I, Singh K, Buttar, GS, Sodhi GPS, Gill HS, Bhagat I, Singh P, Dhaliwal SS, Mavi GS (2015) Agronomic fortification of rice and wheat grains with zinc for nutritional security. Curr Sci 109:1171–1176

    Google Scholar 

  • Rawat N, Tiwari VK, Neelam K, Randhawa GS, Singh K, Chhuneja P, Dhaliwal HS (2009a) Development and characterization of wheat-Aegilops kotschyi amphiploids with high grain iron and zinc. Plant Genet Res 7:271–280

    Article  CAS  Google Scholar 

  • Rawat N, Tiwari VK, Singh N, Randhawa GS, Singh K, Chhuneja P, Dhaliwal HS (2009b) Evaluation and utilization of Aegilops and wild Triticum species for enhancing iron and zinc content in wheat. Genet Res Crop Evol 56:53–64

    Article  Google Scholar 

  • Sadana US, Manchanda JS, Khurana MPS, Dhaliwal SS, Singh H (2010) The current scenario and efficient management of zinc, iron, and manganese deficiencies. Better Crops 2010:24–26

    Google Scholar 

  • Shivay YS, Kumar D, Prasad R (2008) Relative efficiency of zinc sulphate and zinc oxide coated urea in rice-wheat cropping system. Commun Soil Sci Plant Anal 39:1154–1167

    Article  CAS  Google Scholar 

  • Singh MV (2011) Assessing extent of zinc deficiency for soil fertility mapping and nutrition security in humans and animals. Indian J Fertil 7:36–43

    CAS  Google Scholar 

  • Singh K, Chhuneja P, Tiwari VK, Rawat N, Neelam K, Aggarwal R, Malik S, Keller B, Dhaliwal HS (2010) Mapping of QTL for grain iron and zinc content in diploid A genome wheat and validation of these loci in U and S genomes. In: Pag conference, San Diego

    Google Scholar 

  • Tang JW, Zou CQ, He ZH, Shi R, Ortiz-Monasterio I (2008) Mineral element distributions in milling fractions of Chinese wheats. J Cereal Sci 48:821–828

    Article  CAS  Google Scholar 

  • Trethowan RM (2007) Breeding wheat for high iron and zinc at CIMMYT: state of the art, challenges and future prospects. In: Proceedings of the 7th international wheat conference, Mar del Plata

    Google Scholar 

  • Trethowan RM, Reynolds MP, Sayre KD, Ortiz-Monasterio I (2005) Adapting wheat cultivars to resource conserving farming practices and human nutritional needs. Ann Appl Biol 146:404–413

    Article  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Belchl A, Dubcovsky J (2006) A NAC gene regulation senescence improves grain protein, zinc and iron in wheat. Science 312:1298–1301

    Article  Google Scholar 

  • Velu G, Ortiz-Monasterio I, Singh RP, Payne T (2011a) Variation for grain micronutrients concentration in wheat core-collection accessions of diverse origin. Asian J Crop Sci 3:43–48

    Article  Google Scholar 

  • Velu G, Singh RP, Huerta-Espino J, Pena RJ (2011b) Breeding for enhanced zinc and iron concentration in CIMMYT spring wheat germplasm. Czech J Genet Plant Breed 47:S174–S177

    CAS  Google Scholar 

  • Velu G, Singh RP, Huerta-Espino J, Pena-Bautista RJ, Arun B, Mahendru-Singh A, Yaqub Mujahid M, Sohu VS, Mavi GS, Crossa J, Alvarado G, Joshi AK, Pfeiffer WH (2012) Performance of biofortified spring wheat genotypes in target environments for grain zinc and iron concentrations. Field Crop Res 137:261–267

    Article  Google Scholar 

  • Welch RM (2001) Micronutrients, agriculture and nutrition; linkages for improved health and well being. In: Singh K, Mori S, Welch RM (eds) Perspectives on the micronutrient nutrition of crops. Scientific, Jodhpur, pp 247–289

    Google Scholar 

  • Welch RM, Graham RD (1999) A new paradigm for world agriculture: meeting human needs. Productive, sustainable, nutritious. Field Crop Res 60:1–10

    Article  Google Scholar 

  • Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364

    Article  CAS  Google Scholar 

  • Wissuwa M, Ismail AM, Graham RD (2008) Rice grain zinc concentrations as affected by genotype, native soil-zinc availability, and zinc fertilization. Plant Soil 306:37–48

    Article  CAS  Google Scholar 

  • World Bank (2007) From agriculture to nutrition: pathways, synergies and outcomes. Report 40196-GLB. International Bank for Reconstruction and Development/The World Bank, Washington, DC

    Google Scholar 

  • Yilmaz A, Ekiz H, Gultekin I, Torun B, Barut H, Karanlik S, Cakmak I (1998) Effect of seed zinc content on grain yield and zinc concentration of wheat grown in zinc-deficient calcareous soils. J Plant Nutr 21:2257–2264

    Article  CAS  Google Scholar 

  • Zhang Y, Song Q, Jan Y, Tang J, Zhao R, Zhang Y, He Z, Zou C, Ortiz-Monasterio I (2010) Mineral element concentrations in grains of Chinese wheat cultivars. Euphytica 174:303–313

    Article  Google Scholar 

  • Zhang YQ, Sun YX, Ye YL, Karim MR, Xue YF, Yan P, Meng QF, Cui ZL, Cakmak I, Zhang FS, Zou CQ (2012) Zinc biofortification of wheat through fertilizer applications in different locations of China. Field Crop Res 125:1–7

    Article  Google Scholar 

  • Zhao FJ, Su YH, Dunham SJ, Rakszegi M, Bedo Z, McGrath SP, Shewry PR (2009) Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. J Cereal Sci 49:290–295

    Article  CAS  Google Scholar 

  • Zou CQ, Zhang YQ, Rashid A, Ram H, Savasli E, Arisoy RZ, Ortiz-Monasterio I, Simunji S, Wang ZH, Sohu V, Hassan M, Kaya Y, Onder O, Lungu O, Yaqub Mujahid M, Joshi AK, Zelenskiy Y, Zhang FS, Cakmak I (2012) Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant Soil 361:119–130

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari Ram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Ram, H., Singh, S., Gupta, N., Kumar, B. (2016). Biofortified Wheat for Mitigating Malnutrition. In: Singh, U., Praharaj, C., Singh, S., Singh, N. (eds) Biofortification of Food Crops. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2716-8_27

Download citation

Publish with us

Policies and ethics