Skip to main content

Introduction to Nanomaterials

  • Chapter
  • First Online:
Advances in Nanomaterials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 79))

Abstract

The applications of nanomaterials have been enormous, which not only encompasses a single discipline but it stretches across the whole spectrum of science right from agricultural science to space technology. New approaches to synthesize nanomaterials in order to design new devices and processes are being developed and the techniques of fabrication of nanomaterials involve analyzing and controlling the matter at atomic scales. This fascinating research field has started a new era of integration of basic research and advanced technology at the atomic scale which has a potential to bring the technological innovations at highest level. The rudimentary capabilities of nanomaterials today are envisioned to evolve in our overlapping generations of nanotechnology products: passive nanostructures, active nanostructures, systems of nanosystems, and molecular nanosystems. This chapter presents the basic introduction to nanomaterials and their popular applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.S. Edelstein, R.C. Cammarata, Nanomaterials: Synthesis, Properties and Applications (Institute of Physics Publishing, Bristol, 1998)

    Google Scholar 

  2. K.E. Geckeler, E. Rosenberg (eds.), Functional Nanomaterials (American Scientific Publishers, Valencia, 2006), p. 488

    Google Scholar 

  3. B. Bhushan, Handbook of Nanotechnology (Springer, Berlin, 2004)

    Google Scholar 

  4. M. Wilson, K. Kannangara, G. Smith, M. Simmons, B. Raguse, Nanotechnology: Basic Science and Emerging Technologies (CRC Press, Boca Raton, 2002)

    Google Scholar 

  5. R. Valiev, Materials science: nanomaterial advantage. Nature 419(6910), 887–889 (2002)

    Article  Google Scholar 

  6. W.G. Kreyling, M. Semmler-Behnke, Q. Chaudhry, A complementary definition of nanomaterial. Nano Today 5(3), 165–168 (2010)

    Article  Google Scholar 

  7. N.C. Seeman, DNA in a material world. Nature 421, 427 (2003)

    Article  MathSciNet  Google Scholar 

  8. G. Taubes, Double helix does chemistry at a distance—but how? Science 275, 1420 (1997)

    Article  Google Scholar 

  9. A. Okamoto, K. Tanaka, I. Saito, Rational design of a DNA wire possessing an extremely high hole transport ability. J. Am. Chem. Soc. 125, 5066 (2003)

    Article  Google Scholar 

  10. J.R. Peralta-Videa, L. Zhao, M.L. Lopez-Moreno, G. de la Rosa, J. Hong, J.L. Gardea-Torresdey, Nanomaterials and the environment: a review for the biennium 2008–2010. J. Hazard. Mater. 186(1), 1–15 (2011)

    Article  Google Scholar 

  11. B.A. Magnuson, T.S. Jonaitis, J.W. Card, A brief review of the occurrence use, and safety of food related nanomaterials. J. Food Sci. 76(6), R126–R133 (2011)

    Article  Google Scholar 

  12. R.P. Adams, Nanotechnology: understanding small system (CRC Press, Taylor and Francis Group, Boca Raton, 2007)

    Google Scholar 

  13. M.S. Rajan, Nano: The Next Revolution (National Book Trust, New Delhi, 2005)

    Google Scholar 

  14. M.J. O’Connell, Carbon Nanotubes: Properties and Applications (CRS Taylor and Francis, Boca Raton, 2006)

    Google Scholar 

  15. M.A. Ratner, D. Ratner, Nanotechnology: A Gentle Introduction to the Next Big Idea, Technology and Engineering (Prentice Hall, Upper Saddle River, 2003)

    Google Scholar 

  16. Samori, Bruno. Plenty of Room for Biology at the Bottom. An Introduction to Bionanotechnology. By Ehud Gazit. 236–237 (2008)

    Google Scholar 

  17. J.L. de la Fuente, G. Mosquera, R. París, High performance HTPB-based energetic nanomaterial with CuO nanoparticles. J. Nanosci. Nanotechnol. 9(12), 1–7 (2009). 685

    Google Scholar 

  18. B.K. Teo, X.H. Sun, Classification and representations of low-dimensional nanomaterials: terms and symbols. J. Cluster Sci. 18(2), 346–357 (2007)

    Article  Google Scholar 

  19. A.N. Guz, Y.Y. Rushchitskii, Nanomaterials: on the mechanics of nanomaterials. Int. Appl. Mech. 39(11), 1271–1293 (2003)

    Article  MathSciNet  Google Scholar 

  20. T. Tervonen, I. Linkov, J.R. Figueira, J. Steevens, M. Chappell, M. Merad, Risk-based classification system of nanomaterials. J. Nanopart. Res. 11(4), 757–766 (2009)

    Article  Google Scholar 

  21. V.V. Pokropivny, V.V. Skorokhod, Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater. Sci. Eng. C 27(5), 990–993 (2007)

    Article  Google Scholar 

  22. L.M. Liz-Marzan, P. Mulvaney, The assembly of coated nanocrystals. J. Phys. Chem. B 107, 7312 (2003)

    Article  Google Scholar 

  23. X.H. Sun, N.B. Wong, C.P. Li, S.T. Lee, T.K. Sham, Chainlike silicon nanowires: morphology, electronic structure and luminescence studies. J. Appl. Phys. 96, 3447 (2004)

    Article  Google Scholar 

  24. X.H. Sun, C.P. Li, N.B. Wong, C.S. Lee, S.T. Lee, B.K. Teo, Templating effect of hydrogen-passivated silicon nanowires in the production of hydrocarbon nanotubes and nanoonions via sonochemical reactions with common organic solvents under ambient conditions. J. Am. Chem. Soc. 124, 14856 (2002)

    Article  Google Scholar 

  25. A.I. Hochbaum, R. Fan, R.R. He, P.D. Yang, Controlled growth of Si nanowire arrays for device integration. Nano Lett. 5, 457 (2005)

    Article  Google Scholar 

  26. Z. Zhong, F.X. Chen, A.S. Subramanian, J.Y. Lin, J. Highfield, A. Gedanken, Assembly of Au colloids into linear and spherical aggregates and effect of ultrasound irradiation on structure. J. Mater. Chem. 6, 489 (2006)

    Article  Google Scholar 

  27. V. Svrcek, C. Pham-Huu, M.J. Ledoux, F. Le Norman, O. Ersen, S. Joulie, Filling of single silicon nanocrystals within multi-walled carbon nanotubes. Appl. Phys. Lett. 88, 033112 (2006)

    Article  Google Scholar 

  28. W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang, Large-scale synthesis of aligned carbon nanotubes. Science 274, 1701 (1996)

    Article  Google Scholar 

  29. B.K. Teo, H.X. Sun, Silicon-based low-dimensional nanomaterials and nanodevices. Chem. Rev. 107, 1454 (2007)

    Article  Google Scholar 

  30. A.N. Khlobystov, K. Porfyrakis, M. Kanai, D.A. Britz, A. Ardavan, H. Shinohara, T.J.S. Dennis, G.A.D. Briggs, Molecular motion of endohedral fullerenes in single-walled carbon nanotubes. Angew. Chem. Int. Ed. 43, 1386 (2004)

    Article  Google Scholar 

  31. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, Reactivity of large carbon clusters: spheroidal carbon shells and their possible relevance to the formation and morphology of soot. Nature 318, 162 (1985)

    Article  Google Scholar 

  32. W. Kratschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman, C60: a new form of carbon. Nature 347, 354 (1990)

    Google Scholar 

  33. R.C. Haddon, A.F. Hebard, M.J. Rosseinsky, D.W. Murphy, S.J. Duclos, K.B. Lyons, B. Miller, J.M. Rosamilia, R.M. Fleming, A.R. Kortan, S.H. Glarum, A.V. Makhija, A.J. Muller, R.H. Eick, S.M. Zahurak, R. Tycko, G. Dabbagh, F.A. Thiel, Conducting films of C60 and C70 by alkali-metal doping. Nature 350, 320 (1991)

    Google Scholar 

  34. M. Shahid Khan, Figures Simulated (Department of Physics, Jamia Millia Islamia, New Delhi, India) (2015)

    Google Scholar 

  35. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56 (1991)

    Article  Google Scholar 

  36. S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603 (1993)

    Article  Google Scholar 

  37. D.S. Bethune, C.H. Kiang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605 (1993)

    Article  Google Scholar 

  38. S. Frank, P. Poncharal, Z.L. Wang, W.A. deHeer, Carbon nanotube quantum resistors. Science 280, 1744 (1998)

    Article  Google Scholar 

  39. M.K. Rai, S. Sarkar, Carbon nanotube as VLSI interconnect, in Electronic Properties of Carbon Nanotubes, ed. by J.M. Marulanda (Intech, Rijeka, Croatia, 2011)

    Google Scholar 

  40. A. Kumar, S. Parveen, S. Husain, J. Ali, M. Zulfequar, Harsh, M. Husain, Effect of oxygen plasma on field emission characteristics of single-wall carbon nanotubes grown by plasma enhanced chemical vapour deposition system. J. Appl. Phys. 115, 084308 (2014)

    Google Scholar 

  41. A. Kumar, S. Husain, J. Ali, M. Husain, Harsh, M. Husain, Field emission study of carbon nanotubes forest and array grown on Si using Fe as catalyst deposited by electro-chemical method. J. Nanosci. Nanotech. 12(3), 2829 (2012)

    Article  Google Scholar 

  42. Z.H. Khan, M. Husain, Carbon nanotube and its possible applications. Indian J. Mat. Sci. Eng. 12, 529–551 (CSIR, New Delhi)

    Google Scholar 

  43. Z.H. Khan, S. Khan, M. Husain, Variable range hopping in carbon nanotubes. Curr. Nanosci. 6, 1–16 (2010)

    Google Scholar 

  44. Z.H. Khan, N. Salah, S.S. Habib, A. Azam, M.S. Al-Shahawi, Multi-walled carbon nanotubes film sensor for carbon mono-oxide gas. Curr. Nanosci. 8, 274 (2012)

    Article  Google Scholar 

  45. Z.H. Khan, N. Salah, S.S. Habib, M.S. Ansari, M.S. Al-Shahawi, Cobalt catalyzed multi-walled carbon nanotubes film sensor for carbon mono-oxide gas. Dig. J. Nanomater. Biostruct. 6(4), 1947 (2011)

    Google Scholar 

  46. A.F. Hollemann, E. Wiberg, Lehrbuch der Anorganischen Chemei (Walter de Gruyter, Berlin, 1985), p. 701

    Google Scholar 

  47. Y. Lifshitz, DLC-present status. Diamond Relat. Mater. 3–5, 388 (1996)

    Google Scholar 

  48. D.R. Mckenzie, Tetrahedral bonding in amorphous carbon. Rep. Prog. Phys. 59, 1611 (1996)

    Article  Google Scholar 

  49. H. Tsai, D.B. Bogi, Characterisation of diamond-like carbon films and their application as overcoats on thin-film media for magnetic recording. J. Vac. Sci. Technol. A 5(6), 3287 (1987)

    Article  Google Scholar 

  50. J.P. Hirvonen, J. Koskinen, R. Lappalainen, A. Anttila, Preparation and properties of high density hydrogen free hard carbon films with direction beam or arc discharge deposition mater. Sci. Forum 52–53, 197 (1990)

    Article  Google Scholar 

  51. Y. Liftshitz, S.R. Kasi, J.W. Rabalais, Carbon (sp3) film growth from mass selected ion beams: parametric investigations and subplantation model. Mater. Sci. Forum 52–53, 237 (1990)

    Article  Google Scholar 

  52. Y. Lifshitz, G.D. Lempert, E. Grossman, I. Avigal, C. UzanSaguy, R. Kalish, J. Kulik, D. Marton, J.W. Rabalais, The influence of substrate temperature during ion beam deposition on the diamond-like or graphitic nature of carbon films. Diam. Relat. Mater. 4, 287 (1995)

    Article  Google Scholar 

  53. C.A. Davis, A simple model for the formation of compressive stress in thin films by ion bombardment. Thin Solid Films 226, 30 (1993)

    Article  Google Scholar 

  54. J. Robertson, Deposition mechanisms for promoting sp3 bonding in diamond-like carbon. Diam. Relat. Mater. 2, 984 (1993)

    Article  Google Scholar 

  55. Y. Lifshitz, S.R. Kasi, J.W. Rabalais, Subplantation model for film growth from hyperthermal species: application to diamond. Phys. Rev. Lett. 62, 1290 (1990)

    Article  Google Scholar 

  56. B. Bhushan, Chemical, mechanical and tribological characterization of ultra-thin and hard amorphous carbon coatings as thin as 3.5 nm: recent developments. Diam. Relat. Mater. 8, 1985 (1999)

    Article  Google Scholar 

  57. A.K. Sikder, T. Sharda, D.S. Misra, P. Selvam, Chemical vapour deposition of diamond on stainless steel: the effect of Ni-diamond composite coated buffer layer. Diam. Relat. Mater. 7, 1010 (1998)

    Article  Google Scholar 

  58. M. Chhowalla, Y. Yin, G.A.J. Amaratunga, D.R. McKenzie, Th Fraurnheim, Highly tetrahedral amorphous carbon films with low stress. Appl. Phys. Lett. 69, 2344 (1996)

    Article  Google Scholar 

  59. C.B. Collins, F. Davanloo, T.J. Lee, D.R. Jander, J.H. You, H. Park, J.C. Pivin, The bonding of protective films of amorphic diamond to titanium. J. Appl. Phys. 71, 3260 (1992)

    Article  Google Scholar 

  60. A.K. Geim, Graphene: status and prospects. Science 324(5934), 1530 (2009)

    Article  Google Scholar 

  61. M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2, 620 (2006)

    Article  Google Scholar 

  62. J.C. Slonczewski, P.R. Weiss, Band structure of graphite. Phys. Rev. 109, 272 (1958)

    Article  Google Scholar 

  63. G.W. Semenoff, Condensed-matter simulation of a three-dimensional anomaly. Phys. Rev. Lett. 53, 244 (1984)

    Article  MathSciNet  Google Scholar 

  64. C.N.R. Rao, U. Maitra, H.S.S. Ramakrishna Matte, Synthesis, characterization, and selected properties of graphene, in Graphene: Synthesis, Properties, and Phenomena, 1st edn, ed. by C.N.R. Rao, A.K. Sood (wiley, Chichester, 2013)

    Google Scholar 

  65. M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.Z. Yu, N. Koratkar, Enhanced mechanical properties of nanocomposites at low graphene content. ACA Nano 3(12), 3884–3890 (2009)

    Article  Google Scholar 

  66. M. Fuller, The axial ratio and lattice constants of zinc oxide. Science 70, 196 (1929)

    Article  Google Scholar 

  67. C. Bunn, The lattice-dimensions of zinc oxide. Proc. Phys. Soc. 47, 835 (1935)

    Article  Google Scholar 

  68. U. Ozgur, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, H. Morkoc, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 41301 (2005)

    Google Scholar 

  69. J. Grabowska, K.K. Nanda, E. McGlynn, J.-P. Mosnier, M.O. Henry, A. Beaucamp, A. Meaney, Synthesis and photoluminescence of ZnO nanowires/nanorods. J. Mater. Sci. Mater. Electron. 16, 397 (2005)

    Article  Google Scholar 

  70. J. Grabowska, K.K. Nanda, E. McGlynn, J.-P. Mosnier, M.O. Henry, Control of ZnO nanorod array density by Zn supersaturation variation and effects on field emission. Surf. Coat. Technol. 200, 1093 (2005)

    Article  Google Scholar 

  71. C. Ronning, P.X. Gao, Y. Ding, Z.L. Wang, Manganese-doped ZnO nanobelts for spintronics. Appl. Phys. Lett. 84, 782 (2004)

    Article  Google Scholar 

  72. W.Z. Wang, B.Q. Zeng, J. Yang, B. Poudel, J.Y. Huang, M.J. Naughton, Z.F. Ren, Aligned ultralong ZnO nanobelts and their enhanced field emission. Adv. Mater. 18, 3275 (2006)

    Article  Google Scholar 

  73. Z.W. Pan, Z.R. Dai, Z.L. Wang, Nanobelts of semiconducting oxides. Science 291, 1947–1949 (2001)

    Article  Google Scholar 

  74. J. Grabowska, A. Meaney, K.K. Nanda, J.-P. Mosnier, M.O. Henry, J.R. Duclere, E. McGlynn, Surface excitonic emission and quenching effects in ZnO nanowire/nanowall systems: limiting effects on device potential. Phys. Rev. B 71, 115439 (2005)

    Article  Google Scholar 

  75. Y.J. Xing, Z.H. Xi, Z.Q. Xue, X.D. Zhang, J.H. Song, Optical properties of the ZnO nanotubes synthesized via vapor phase growth. Appl. Phys. Lett. 83, 1689 (2003)

    Article  Google Scholar 

  76. Y. Qiu, S. Yang, ZnO Nanotetrapods: controlled vapor-phase synthesis and application for humidity sensing. Adv. Func. Mater. 17, 1345 (2007)

    Article  Google Scholar 

  77. W.I. Park, D.H. Kim, S.-W. Jung, G.C. Yi, Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors. Appl. Phys. Lett. 80, 4232 (2002)

    Article  Google Scholar 

  78. X. Fan, M.L. Zhang, I. Shafiq, W.J. Zhang, C.S. Lee, S.T. Lee, ZnS/ZnO heterojunction nanoribbons. Adv. Mater. 21, 2393 (2009)

    Article  Google Scholar 

  79. M. Riaz, J. Song, O. Nur, Z.L. Wang, M. Willander, Study of the piezoelectric power generation of ZnO nanowire arrays grown by different methods. Adv. Funct. Mater. XX, 1–6 (2010). doi:10.1002/adfm.201001203

    Google Scholar 

  80. J.J. Wu, S.C. Liu, Catalyst-free growth and characterization of ZnO nanorods. Adv. Mater. 14, 215 (2002)

    Article  Google Scholar 

  81. X. Wang, J. Song, J. Liu, Z.L. Wang, Direct-current nanogenerator driven by ultrasonic waves. Science 316, 102 (2007)

    Article  Google Scholar 

  82. Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire array. Science 312, 242 (2006)

    Article  Google Scholar 

  83. C.J. Lee, T.J. Lee, S.C. Lyu, Y. Zhang, H. Ruth, H.J. Lee, Field emission from well-aligned zinc oxide nanowires grown at low temperature. Appl. Phys. Lett. 81, 3648 (2002)

    Article  Google Scholar 

  84. E. Comini, G. Faglia, G. Sberveglieri, Z.W. Pan, Z.L. Wang, Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 81, 1869 (2002)

    Article  Google Scholar 

  85. M. Zhao, Z.L. Wang, S.X. Mao, Piezoelectric characterization on individual zinc oxide nanobelt under piezoresponse force microscope. Nano Lett. 4, 587 (2004)

    Article  Google Scholar 

  86. W. Hughes, Z.L. Wang, Nanobelts as nanocantilevers. Appl. Phys. Lett. 82, 2886 (2003)

    Article  Google Scholar 

  87. H.T. Wang, Hydrogen-selective sensing at room temperature with ZnO nanorods. Appl. Phys. Lett. 86, 243503 (2005)

    Article  Google Scholar 

  88. W. Lee, Catalyst-free growth of ZnO nanowires by metal-organic chemical vapour deposition (MOCVD) and thermal evaporation. Acta Mater. 52, 3949 (2004)

    Article  Google Scholar 

  89. S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, H. Shen, ZnO Schottky ultraviolet photodetectors. J. Cryst. Growth 225, 110 (2001)

    Article  Google Scholar 

  90. Y.P. Liu, Y. Guo, J.Q. Li, M. Trunk, A.Y. Kuznetsov, J.B. Xu, Z.X. Mei, X.L. Du, Temperature dependence of surface plasmon mediated near band-edge emission from Ag/ZnO nanorods. J. Opt. 13, 075003 (2011)

    Article  Google Scholar 

  91. C.J. Lee, T.J. Lee, S.C. Lyu, Y. Zhang, H. Ruth, H.J. Lee, Field emission from well-aligned zinc oxide nanowires grown at low temperature. Appl. Phys. Lett. 81, 3648 (2002)

    Article  Google Scholar 

  92. M.S. Arnold, P. Avouris, Z.W. Pan, Z.L. Wang, Field-effect transistors based on single semiconducting oxide nanobelts. J. Phys. Chem. 107, 659 (2003)

    Article  Google Scholar 

  93. P. Hui, L. Jizhong, S. Han, F. Yuanping, P. Cheekok, L. Jianyi, Hydrogen storage of ZnO and Mg doped ZnO nanowires. Nanotechnology 17, 2963 (2006)

    Article  Google Scholar 

  94. Q. Wan, C.L. Lin, X.B. Yu, T.H. Wang, Room-temperature hydrogen storage characteristics of ZnO nanowires. Appl. Phys. Lett. 84, 124 (2004)

    Article  Google Scholar 

  95. M. Ahmad, J. Zhu, ZnO based advanced functional nanostructures: synthesis, properties and applications. J. Mater. Chem. 21, 599 (2010)

    Article  Google Scholar 

  96. H. Yan, R. He, J. Johnson, M. Law, R.J. Saykally, P. Yang, Dendritic nanowire ultraviolet laser array. J. Am. Chem. Soc. 25, 4728 (2003)

    Article  Google Scholar 

  97. J.C. Johnson, H. Yan, P. Yang, R.J. Saykalley, Optical cavity effects in ZnO nanowire lasers and waveguides. J. Phys. Chem. B 105, 8816 (2001)

    Article  Google Scholar 

  98. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897 (2001)

    Article  Google Scholar 

  99. J. Bao, M.A. Zimmler, F. Capasso, X. Wang, Z.F. Ren, Broadband ZnO single-nanowire light-emitting diode. Nano Lett. 6(8), 1719–1722 (2006)

    Google Scholar 

  100. I. Bedja, P.V. Kamat, X. Hua, A.G. Lappin, S. Hotchandani, Photosensitization of nanocrystalline ZnO films by Bis(2,2′-bipyridine)(2,2′-bipyridine-4,4′-dicarboxylic acid)ruthenium(II). Langmuir 13, 2398 (1997)

    Article  Google Scholar 

  101. K. Keis, C. Bauer, G. Boschloo, J. Photochem et al., Nanostructured ZnO electrodes for dye-sensitized solar cell applications. Photobiol. A 148, 57 (2002)

    Article  Google Scholar 

  102. K. Keis, E. Magnusson, H. Lindström, S.-E. Lindquist, A. Hagfeldt, A 5% efficient photoelectrochemical solar cell based on nano structured ZnO electrodes. Sol. Energy Mater. Sol. Cells 73, 51 (2002)

    Article  Google Scholar 

  103. K. Keis, Photoelectrochemical properties of nano-to microstructured ZnO electrodes. J. Electrochem. Soc. 148, 149 (2001)

    Google Scholar 

  104. R. Katoh, A. Furube, Y. Tamaki, T. Yoshihara, M. Murai, K. Hara, S. Murata, H. Arakawa, M. Tachiya, Microscopic imaging of the efficiency of electron injection from excited sensitizer dye into nanocrystalline ZnO film. J. Photochem. Photobiol. A 166, 69 (2004)

    Article  Google Scholar 

  105. R. Katoh, A. Furube, T. Yoshihara, K. Hara, G. Fujihashi, S. Takano, S. Murata, H. Arakawa, M. Tachiya, Efficiencies of electron injection from excited N3 dye into nanocrystalline semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) films. J. Phys. Chem. B 108, 4818 (2004)

    Article  Google Scholar 

  106. A. Furube, R. Katoh, K. Hara, S. Murata, H. Arakawa, M. Tachiya, Ultrafast stepwise electron injection from photoexcited Ru-complex into nanocrystalline ZnO film via intermediates at the surface. J. Phys. Chem. B 107, 4162 (2003)

    Article  Google Scholar 

  107. H. Horiuchi, R. Katoh, K. Hara, M. Yanagida, S. Murata, H. Arakawa, M. Tachiya, Electron injection efficiency from excited N3 into nanocrystalline ZnO films: effect of (N3–Zn2+) aggregate formation. J. Phys. Chem. B 107, 2570 (2003)

    Article  Google Scholar 

  108. B. O’Regan, M.A. Grätzel, Low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991)

    Article  Google Scholar 

  109. W. Lee, M.-C. Jeong, J.-M. Myoung, Fabrication and application potential of ZnO nanowires grown on GaAs (002) substrates by metal–organic chemical vapour deposition. Nanotechnology 15, 254 (2004)

    Article  Google Scholar 

  110. Y. Huang, X. Bai, Y. Zhang, In situ mechanical properties of individual ZnO nanowires and the mass measurement of nanoparticles. J. Phys. Condens. Mat. 18, 179–184 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zishan H. Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Khan, Z.H., Kumar, A., Husain, S., Husain, M. (2016). Introduction to Nanomaterials. In: Husain, M., Khan, Z. (eds) Advances in Nanomaterials. Advanced Structured Materials, vol 79. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2668-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2668-0_1

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2666-6

  • Online ISBN: 978-81-322-2668-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics