Skip to main content

Applications of Algal Biofilms for Wastewater Treatment and Bioproduct Production

  • Chapter
  • First Online:
Algae and Environmental Sustainability

Part of the book series: Developments in Applied Phycology ((DAPH,volume 7))

Abstract

Developing full-scale algal growth systems on attached platforms is motivated by the need to reduce energy requirements and costs associated with conventional algae cultivation, harvesting, and downstream processes. Bioproducts from algae include fuels, feeds, pigments, and additional sustainable bioproducts, which serve as substitutes for petroleum-based chemicals. In addition, the development of robust algal biofilm technology offers the potential advantages of operating in deeper water columns, treating wastewaters that are characterized by high turbidity and/or color, and requiring less footprint area. The use of wastewater for algae cultivation has major advantages compared with using defined media added to clean water that include supplying both macro- and micronutrients that offset the cost of commercial fertilizers, utilizing currently existing infrastructure for handling, transporting, and containing large quantities of wastewater, recycling nutrients, and collecting revenues for wastewater remediation that offset the cost of cultivation. This chapter presents an examination of the current knowledge base for algae biofilms specifically related to developing an algae-based biorefinery that integrates wastewater treatment with bioproduct production. Topics examined include mathematical modeling challenges for predicting performance, scaling for production of large amounts of algae biomass, and culturing algae for municipal and industrial wastewater treatment. Results of the examination indicate needs for standardization of parameters for measuring and monitoring biofilm processes, for characterization of mixed algae cultures, and for the development of mathematical models that can predict the growth and yield of mixed algal cultures as biofilms. Results also indicate that the integration of wastewater treatment and bioproducts production has promising benefits with regard to reducing energy requirements and costs of an algal-based industry, with associated benefits of environmental sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abe K, Takahashi E, Hirano M (2008) Development of laboratory-scale photobioreactor for water purification by use of a biofilter composed of the aerial microalga Trentepohlia aurea (Chlorophyta). J Appl Phycol 20:283–288

    Article  CAS  Google Scholar 

  • Abed RMM, Al-Thukair A, de Beer D (2006) Bacterial diversity of a cyanobacterial mat degrading petroleum compounds at elevated salinities and temperatures. FEMS Microbiol Ecol 57:290–301

    Article  CAS  PubMed  Google Scholar 

  • Adey WH, Kangas PC, Mulbry W (2011) Algal turf scrubbing: cleaning surface waters with solar energy while producing a biofuel. Bioscience 61:434–441

    Article  Google Scholar 

  • Akhtar N, Iqbal J, Iqbal M (2004) Removal and recovery of nickel(II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characterization studies. J Hazard Mater 108:85–94

    Article  CAS  PubMed  Google Scholar 

  • Al-rajhia S, Raut N, Al-qasmi F, et al (2012) Treatments of industrials wastewater by using microalgae. In: International conference on environmental, biomedical and biotechnology, vol 41. IACSIT Press, Singapore

    Google Scholar 

  • Barranguet C, Charantoni E, Plans M, Admiraal W (2000) Short-term response of monospecific and natural algal biofilms to copper exposure. Eur J Phycol 35:397–406

    Article  Google Scholar 

  • Beal CM, Stillwell AS, King CW et al (2012) Energy return on investment for algal biofuel production coupled with wastewater treatment. Water Environ Res 84:692–710

    Article  CAS  PubMed  Google Scholar 

  • Berner F, Heimann K, Sheehan M (2014) Microalgal biofilms for biomass production. J Appl Phycol 27(5):1793–1804

    Article  Google Scholar 

  • Boelee NC, Temmink H, Janssen M et al (2011) Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms. Water Res 45:5925–5933

    Article  CAS  PubMed  Google Scholar 

  • Boelee NC, Janssen M, Temmink H, et al (2013) The effect of harvesting on biomass production and nutrient removal in phototrophic biofilm reactors for effluent polishing. J Appl Phycol 26(3):1439–1452

    Google Scholar 

  • Callow ME (2000) Algal biofilms. In: Evans LV (ed) Biofilms: recent advances in their study and control. Harwood Academic Publishers, Amsterdam, pp 189–204

    Google Scholar 

  • Cerucci M, Jaligama G, Ambrose R (2010) Comparison of the Monod and droop methods for dynamic water quality simulations. J Environ Eng 136(10):1009–1019

    Article  CAS  Google Scholar 

  • Chaumont D (1993) Biotechnology of algal biomass production: a review of systems for outdoor mass culture. J Appl Phycol 5:593–604

    Article  Google Scholar 

  • Chavan A, Mukherji S (2010) Effect of co-contaminant phenol on performance of a laboratory-scale RBC with algal-bacterial biofilm treating petroleum hydrocarbon-rich wastewater. J Chem Technol Biotechnol 85:851–859

    Article  CAS  Google Scholar 

  • Chevalier P, de la Noüe J (1985) Wastewater nutrient removal with microalgae immobilized in carrageenan. Enzyme Microb Technol 7:621–624

    Article  CAS  Google Scholar 

  • Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29:686–702

    Article  CAS  PubMed  Google Scholar 

  • Christenson LB, Sims RC (2012) Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by-products. Biotechnol Bioeng 109:1674–1684

    Article  CAS  PubMed  Google Scholar 

  • Coffin RB, Cifuentes LA, Pritchard PH (1997) Assimilation of oil-derived carbon and remedial nitrogen applications by intertidal food chains on a contaminated beach in Prince William Sound, Alaska. Mar Environ Res 44:27–39

    Article  CAS  Google Scholar 

  • Cohen Y (2002) Bioremediation of oil by marine microbial mats. Int Microbiol 5:189–193

    Article  CAS  PubMed  Google Scholar 

  • Dalrymple OK, Halfhide T, Udom I et al (2013) Wastewater use in algae production for generation of renewable resources: a review and preliminary results. Aquat Biosyst 9:2

    Article  PubMed  PubMed Central  Google Scholar 

  • De Godos I, González C, Becares E et al (2009) Simultaneous nutrients and carbon removal during pretreated swine slurry degradation in a tubular biofilm photobioreactor. Appl Microbiol Biotechnol 82:187–194

    Article  CAS  PubMed  Google Scholar 

  • Edwards DR, Daniel TC (1992) Environmental impacts of on-farm poultry waste-disposal – a review. Bioresour Technol 41:9–33

    Article  CAS  Google Scholar 

  • Eriksen NT (2008) Production of phycocyanin – a pigment with applications in biology, biotechnology, foods and medicine. Appl Microbiol Biotechnol 80:1–14

    Article  CAS  PubMed  Google Scholar 

  • Flora JRV, Suidan MT, Biswas P, Sayles GD (1993) Modeling substrate transport into biofilms: role of multiple ions and pH effects. Water Environ Fed 119:908–930

    CAS  Google Scholar 

  • Flora JRV, Suidan MT, Biswas P et al (1995) Modeling algal biofilms: role of carbon, light, cell surface charge, and ionic species. Water Environ Res 67:87–94

    Article  CAS  Google Scholar 

  • Fortin C, Denison FH, Garnier-Laplace J (2007) Metal-phytoplankton interactions: modeling the effect of competing ions (H+, Ca2+, and Mg2+) on uranium uptake. Environ Toxicol Chem 26:242–248

    Article  CAS  PubMed  Google Scholar 

  • Graba M, Sauvage S, Majdi N, Mialet B, Moulin F, Urrea G, Buffan-Dubau E, Tackx M, Sabater S, Sanchez-Perez J (2014) Modelling epilithic biofilms combining hydrodynamics, invertebrate grazing and algal traits. Freshw Biol 59:1213–1228

    Article  Google Scholar 

  • Gross M, Henry W, Michael C, Wen Z (2013) Development of a rotating algal biofilm growth system for attached microalgae growth with in situ biomass harvest. Bioresour Technol 150C:195–201

    Article  Google Scholar 

  • Guzzon A, Bohn A, Diociaiuti M, Albertano P (2008) Cultured phototrophic biofilms for phosphorus removal in wastewater treatment. Water Res 42:4357–4367

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann JP (1998) Minireview wastewater treatment with suspended and nonsuspended algae 1. J Phycol 34:757–763

    Google Scholar 

  • Johnson MB, Wen Z (2010) Development of an attached microalgal growth system for biofuel production. Appl Microbiol Biotechnol 85:525–534

    Article  CAS  PubMed  Google Scholar 

  • Kanavillil N, Thorn M, Kurissery S (2012) Characterization of natural biofilms in temperate inland waters. J Great Lakes Res 38:429–438

    Article  CAS  Google Scholar 

  • Kebede-westhead E, Pizarro C, Mulbry WW, Wilkie AC (2003) Production and nutrient removal by periphyton grown under different loading rates of anaerobically digested flushed dairy manure. J Phycol 39:1275–1282

    Article  Google Scholar 

  • Kebede-Westhead E, Pizarro C, Mulbry WW (2006) Treatment of swine manure effluent using freshwater algae: production, nutrient recovery, and elemental composition of algal biomass at four effluent loading rates. J Appl Phycol 18:41–46

    Article  Google Scholar 

  • Kesaano M, Sims RC (2014) Algal biofilm based technology for wastewater treatment. Algal Res 5:231–240

    Article  Google Scholar 

  • Kesaano M, Gardner RD, Moll K et al (2015) Bioresource technology dissolved inorganic carbon enhanced growth, nutrient uptake, and lipid accumulation in wastewater grown microalgal biofilms. Bioresour Technol 180:7–15

    Article  CAS  PubMed  Google Scholar 

  • Klausmeier CA, Litchman E, Daufresne T, Levin SA (2004) Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429:171–174

    Article  CAS  PubMed  Google Scholar 

  • Knud-Hansen CF, McElwee K, Baker J, Clair D (1998) Pond fertilization: ecological approach 1400 and practical application. Pond dynamics/Aquaculture collaborative research 1401 Support Program, Oregon State University

    Google Scholar 

  • Kumar A, Ergas S, Yuan X et al (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28:371–380

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Yadav A, Gaur JP (2012) Growth, composition and metal removal potential of a Phormidium bigranulatum-dominated mat at elevated levels of cadmium. Aquat Toxicol 116–117:24–33

    Article  PubMed  Google Scholar 

  • Liehr SK, Suidan MT, Eheart JW (1990) A modeling study of carbon and light limitation in algal biofilms. Biotechnol Bioeng 35:233–243

    Article  CAS  PubMed  Google Scholar 

  • Liehr S, Chen H-J, Lin S-H (1994) Metals removal by algal biofilms. Water Sci Technol 30:59–68

    CAS  Google Scholar 

  • Lundquist TJ, Woertz IC, Quinn NWT, Benemann JR (2010) A realistic technology and engineering assessment of algae biofuel production. Energy Biosciences Institute, Berkeley

    Google Scholar 

  • Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. BioMetals 15:377–390

    Article  CAS  PubMed  Google Scholar 

  • Markou G, Georgakakis D (2011) Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: a review. Appl Energy 88:3389–3401

    Article  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232

    Article  CAS  Google Scholar 

  • Mulbry W, Kondrad S, Pizarro C, Kebede-Westhead E (2008) Treatment of dairy manure effluent using freshwater algae: algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers. Bioresour Technol 99:8137–8142

    Article  CAS  PubMed  Google Scholar 

  • Murphy CF, Allen DT (2011) Energy-water nexus for mass cultivation of algae. Environ Sci Technol 45:5861–5868

    Article  CAS  PubMed  Google Scholar 

  • Murphy T, BerberoÄŸlu H (2011) Temperature fluctuation and evaporative loss rate in an algae biofilm photobioreactor. J Sol Energy Eng 134:011002

    Article  Google Scholar 

  • Murphy T, Berberoglu H (2014) Flux balancing of light and nutrients in a biofilm photobioreactor for maximizing photosynthetic productivity. Biotechnol Prog 30(2):348–359

    Article  CAS  PubMed  Google Scholar 

  • Olguín EJ (2012) Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery. Biotechnol Adv 30:1031–1046

    Article  PubMed  Google Scholar 

  • Orandi S, Lewis DM (2013) Biosorption of heavy metals in a photo-rotating biological contactor – a batch process study. Appl Microbiol Biotechnol 97:5113–5123

    Article  CAS  PubMed  Google Scholar 

  • Orandi S, Lewis DM, Moheimani NR (2012) Biofilm establishment and heavy metal removal capacity of an indigenous mining algal-microbial consortium in a photo-rotating biological contactor. J Ind Microbiol Biotechnol 39:1321–1331

    Article  CAS  PubMed  Google Scholar 

  • Ozkan A, Kinney K, Katz L, Berberoglu H (2012) Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor. Bioresour Technol 114:542–548

    Article  CAS  PubMed  Google Scholar 

  • Parker DL, Mihalick JE, Plude JL et al (2000) Sorption of metals by extracellular polymers from the cyanobacterium Microcystis aeruginosa f. flosaquae strain C3-40. J Appl Phycol 12:219–224

    Article  CAS  Google Scholar 

  • Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102:17–25

    Article  CAS  PubMed  Google Scholar 

  • Polprasert C, Agarwalla BK (1994) A facultative pond model incorporating biofilm activity. Water Environ Fed 66:725–732

    Article  CAS  Google Scholar 

  • Posadas E, García-Encina PA, Soltau A et al (2013) Carbon and nutrient removal from centrates and domestic wastewater using algal-bacterial biofilm bioreactors. Bioresour Technol 139:50–58

    Article  CAS  PubMed  Google Scholar 

  • Raghukumar C, Vipparty V, David JJ, Chandramohan D (2001) Degradation of crude oil by marine cyanobacteria. Appl Microbiol Biotechnol 57:433–436

    Article  CAS  PubMed  Google Scholar 

  • Roeselers G, Van Loosdrecht MCM, Muyzer G (2008) Phototrophic biofilms and their potential applications. J Appl Phycol 20:227–235

    Article  CAS  PubMed  Google Scholar 

  • Rutherford J, Scarsbrook M, Broekhuizen N (2000) Grazer control of stream algae: modeling temperature and flood effects. J Environ Eng 126(4):331–339

    Article  CAS  Google Scholar 

  • Schnurr PJ, Espie GS, Allen DG (2013) Algae biofilm growth and the potential to stimulate lipid accumulation through nutrient starvation. Bioresour Technol 136:337–344

    Article  CAS  PubMed  Google Scholar 

  • Singh SP, Verma SK, Singh RK, Pandey PK (1989) Copper uptake by free and immobilized cyanobacterium. FEMS Microbiol Lett 60:193–196

    Article  CAS  Google Scholar 

  • Son D, Fujino T (2003) Modeling approach to periphyton and nutrient interaction in a stream. J Environ Eng 129:834–843

    Article  CAS  Google Scholar 

  • Stumm W, Morgan JJ (1981) Aquatic chemistry: an introduction emphasizing chemical equilibria in natural waters. Wiley, New York

    Google Scholar 

  • Sturm BSM, Lamer SL (2011) An energy evaluation of coupling nutrient removal from wastewater with algal biomass production. Appl Energy 88:3499–3506

    Article  CAS  Google Scholar 

  • Su Y, Mennerich A, Urban B (2011) Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture. Water Res 45:3351–3358

    Article  CAS  PubMed  Google Scholar 

  • Travieso L, Pellón A, Benítez F et al (2002) BIOALGA reactor: preliminary studies for heavy metals removal. Biochem Eng J 12:87–91

    Article  CAS  Google Scholar 

  • U.S. CBO (2002) Future investment in drinking water and wastewater infrastructure. U.S. Congressional Budget Office, Washington, DC, November. http://www.cbo.gov/doc.cfm?index=3983

  • U.S. DOE (2012) Biomass: multi-year program plan. U.S. Department of Energy, April 2012. http://www1.eere.energy.gov/biomass/pdfs/mypp_april_2012.pdf

  • U.S. EIA (2010) EIA Annual energy outlook 2010 with projections to 2035, report #:DOE/EIA-0383(2010), Release Date: 11 May 2010

    Google Scholar 

  • Vijayakumar S (2012) Potential applications of cyanobacteria in industrial effluents – a review. J Bioremed Biodeg 3:154. doi:10.4172/2155-6199.1000154

    Google Scholar 

  • Wei Q, Hu Z, Li G et al (2008) Removing nitrogen and phosphorus from simulated wastewater using algal biofilm technique. Front Environ Sci Eng China 2:446–451

    Article  Google Scholar 

  • Wilkie AC, Mulbry WW (2002) Recovery of dairy manure nutrients by benthic freshwater algae. Bioresour Technol 84:81–91

    Article  CAS  PubMed  Google Scholar 

  • Wolf G, Picioreanu C, Loosdrecht M (2007) Kinetic modeling of phototrophic biofilms: the PHOBIA model. Biotechnol Bioeng 97:1064–1079

    Article  CAS  PubMed  Google Scholar 

  • Zamalloa C, Boon N, Verstraete W (2013) Decentralized two-stage sewage treatment by chemical-biological flocculation combined with microalgae biofilm for nutrient immobilization in a roof installed parallel plate reactor. Bioresour Technol 130:152–160

    Article  CAS  PubMed  Google Scholar 

  • Zippel B, Rijstenbil J, Neu TR (2007) A flow-lane incubator for studying freshwater and marine phototrophic biofilms. J Microbiol Methods 70:336–345

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maureen Kesaano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Kesaano, M., Smith, T., Wood, J., Sims, R.C. (2015). Applications of Algal Biofilms for Wastewater Treatment and Bioproduct Production. In: Singh, B., Bauddh, K., Bux, F. (eds) Algae and Environmental Sustainability. Developments in Applied Phycology, vol 7. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2641-3_3

Download citation

Publish with us

Policies and ethics