Skip to main content

Abstract

The uprising demand in dissolving pulp, a special chemical pulp, during the last decade has fascinated the researchers to develop a modern biotechnology which could either improve its existing processes or facilitate novel processes of production in eco-friendly manner. These include the use of different microbial enzymes or the microorganisms themselves in various bioprocesses such as biopulping and/or biobleaching of sulphite pulp or bioconversion of kraft pulp to dissolving pulp. The hydrolytic enzymes specifically xylanases and cellulases have been used as the process tools rendering the benefit of eco-friendly and economic bioprocess. Special emphasis is paid to convert kraft pulp, originating from both wood and nonwood, into dissolving pulp by using xylanases and cellulases to selectively reduce hemicelluloses and improve pulp reactivity, respectively. The viscose process being a major consumer of dissolving pulp has drawn more attention. Extensive research work has been conducted to achieve high pulp reactivity as well as accessibility towards solvent and reagent for reducing the carbon disulphide (CS2) consumption in viscose process. Here, the various characteristic properties of dissolving pulp and its end use with various processes, including existing and novel, for its production are reviewed. Microbial enzymes, namely, xylanases and cellulases, for their immense potential as process tools are briefly discussed along with their mode of action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allison RW, Clark TA, Wrathall SH (1993) Pretreatment of radiate pine kraft pulp with a thermophilic enzyme. Part II effect on oxygen, ozone and chlorine dioxide bleaching. Appita 46(5):349–353

    CAS  Google Scholar 

  • Ambjörnsson HA, Östberg L, Schenzel K, Larsson PT, Germgård U (2014) Enzyme pretreatment of dissolving pulp as a way to improve the following dissolution in NaOH/ZnO. Holzforschung 68(4):385–391

    Article  Google Scholar 

  • Bajpai P (2012) Production of dissolving grade pulp. Biotechnology for pulp and paper processing. Springer, New York

    Google Scholar 

  • Bajpai P, Bajpai P (2001) Development of a process for the production of dissolving kraft pulp using xylanase enzyme. Appita J 54(4):381–384

    CAS  Google Scholar 

  • Bajpai P, Bhardwaj NK, Bajpai PK, Jauhari MB (1994) The impact of xylanases in bleaching of eucalyptus kraft pulp. J Biotechnol 36(1):1–6

    Article  Google Scholar 

  • Battan B, Kuhar S, Sharma J, Kuhad RC (2007) Biodiversity of hemicelluloses degrading microorganisms and their enzymes. In: Kuhad RC, Singh A (eds) Lignocellulose biotechnology future prospects. IK International Publishing House Pvt. Ltd, New Delhi, pp 121–147

    Google Scholar 

  • Bernstein J (2002) Polymorphism in molecular crystals. Oxford University Press, New York, p 14

    Google Scholar 

  • Bhardwaj NK, Bajpai P, Bajpai P (1996) Use of enzymes in modification of fibers for improved beatability. J Biotechnol 51(1):21–26

    Article  CAS  Google Scholar 

  • Bim MA, Franco TT (2000) Extraction in aqueous two-phase systems of alkaline xylanase produced by Bacillus pumilus and its application in kraft pulp bleaching. J Chromatogr 743(1):349–356

    Article  CAS  Google Scholar 

  • Binod P, Palkhiwala P, Gaikaiwari R, Nampoothiri KM, Duggal A, Dey K, Pandey A (2013) Industrial enzymes-present status and future perspectives for India. J Sci Ind Res 72:271–286

    CAS  Google Scholar 

  • Buchert J, Oksanen T, Viikari L (1998) Modification of fibre properties by enzyme treatments, improvement of recyclability and the recycling paper industry of the future. COST Action El paper recyclability, Las Palmas Gran Canaria, pp 306–311

    Google Scholar 

  • Cadena EM, Chriac AI, Pastor FI, Diaz P, Vidal T, Torres AL (2010) Use of cellulases and recombinant cellulose binding domains for refining TCF kraft pulp. Biotechnol Prog 26(4):960–967

    CAS  PubMed  Google Scholar 

  • Cao Y, Tan H (2002) Effects of cellulase on the modification of cellulose. Carbohydr Res 337(14):1291–1296

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Tan H (2006) Improvement of alkali solubility of cellulose with enzymatic treatment. Appl Microbiol Biotechnol 70(2):176–182

    Article  CAS  PubMed  Google Scholar 

  • Carbohydrate-Active Enzyme (CAZy) Database. http://www.cazy.org. Accessed 27 Aug 2014

  • Christoffersson-Elg K (2005) Dissolving pulp – multivariate characterisation and analysis of reactivity and spectroscopic properties. PhD thesis, Umeå University, Umeå

    Google Scholar 

  • Christov L (1999) Biotechnology in dissolving pulp manufacture. In: 1999 Pulping conference proceedings, Tappi

    Google Scholar 

  • Christov LP, Akhtar M, Prior BA (1996) Biobleaching in dissolving pulp production. In: Srebotnik E, Messner K (eds) Biotechnology in the pulp and paper industry. Facultas- Universitätsverlag, Vienna, pp 625–628

    Google Scholar 

  • Christov LP, Akhtar M, Prior BA (1998) The potential of biosulfite pulping in dissolving pulp production. Enzyme Microb Technol 23(1–2):70–74

    Article  CAS  Google Scholar 

  • Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. Microbiol Rev 29:3–23

    CAS  Google Scholar 

  • Coughlan MP (1992) Towards an understanding of the mechanism of action of main chain hydrolyzing xylanases. In: Visser J, Beldman G, Someren MAK-V, Voragen AGJ (eds) Xylans and xylanases, vol 7, Progress in biotechnology. Elsevier Science Publishers BV, Amsterdam/New York, pp 111–139

    Google Scholar 

  • Csiszar E, Urbanskzi K, Szakaes G (2001) Biotreatment of desized cotton fabric by commercial cellulase and xylanase enzymes. J Mol Catal B Enzym 11:1065–1072

    Article  CAS  Google Scholar 

  • Davies GL, Wilson K, Henrissat B (1997) Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem J 321:557–559

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dhiman SS, Sharma J, Battan B (2008a) Pretreatment processing of fabrics alkalothermophilic xylanase from Bacillus stearothermophilus SDX. Enzyme Microb Technol 43:262–269

    Article  CAS  Google Scholar 

  • Dhiman SS, Sharma J, Battan B (2008b) Industrial applications and future prospects of microbial xylanases: a review. Bioresources 3(4):1377–1402

    Google Scholar 

  • Dufresne A (2012) Nanocellulose from nature to high performance tailored materials. Walter de Gruyter GmbH, Berlin/Boston

    Book  Google Scholar 

  • Engström A-C, Ek M, Henriksson G (2006) Improved accessibility and reactivity of dissolving pulp for the viscose process: pretreatment with monocomponent endoglucanase. Biomacromolecules 7(6):2027–2031

    Article  PubMed  Google Scholar 

  • Eremeeva T, Bikova T, Eismonte M, Viesturs U, Treimanis A (2001) Fractionation and molecular characteristics of cellulose during enzymatic hydrolysis. Cellulose 8(1):69–79

    Article  CAS  Google Scholar 

  • Ferraz A, Christov L, Akhtar M (1998) Fungal pretreatment for organosolv pulping and dissolving pulp production. In: Young RA, Akhtar M (eds) Environmentally friendly technologies for the pulp and paper industry. Wiley, New York

    Google Scholar 

  • Fischer K, Puchinge L, Schloffer K, Kreiner W, Messner K (1993) Enzymatic pitch control of sulfite pulp on pilot scale. J Biotechnol 27(3):341–348

    Article  CAS  Google Scholar 

  • Fischer K, Akhtar M, Blanchette RA, Burnes TA, Messner K, Kirk TK (1994) Reduction of resin content in wood chips during experimental biological pulping processes. Holzforschung 48:285–290

    Article  CAS  Google Scholar 

  • Floe G (2011) Dissoving pulp: the great comeback “It’s all about cotton!” TAPPI PEERS dissolving pulp forum. Pöyry management consulting 2011. Oregon Convention Center Portland, Ore., USA

    Google Scholar 

  • Fock W (1959) A modified method for determining the reactivity of viscose-grade dissolving pulps. DasPapier 13:92–95

    CAS  Google Scholar 

  • Gehmayr V, Sixta H (2011) Dissolving pulps from enzyme treated kraft pulps for viscose application. Lenzinger Berichte 89:52–160

    Google Scholar 

  • Gehmayr V, Schild G, Sixta H (2011) A precise study on the feasibility of enzyme treatments of a kraft pulp viscose application. Cellulose 18:479–491

    Article  CAS  Google Scholar 

  • Gil N, Gil C, Amaral ME, Costa AP, Duarte AP (2009) Use of enzymes to improve the refining of a bleached Eucalyptus globulus kraft pulp. Biochem Eng J 46(2):89–95

    Article  CAS  Google Scholar 

  • Gustafsson J, Alén R, Engström J, Korpinen R, Kuusisto P, Leavitt A, Olsson K, Piira J, Samuelsson A, Sundquist J (2011) Pulping. In: Pedro F (ed) Chemical pulping part 1: fibre chemistry and technology second edition papermaking science and technology. Paperi ja Puu Oy, Finland

    Google Scholar 

  • Hebeish A and Guthrie JT (1981) The chemistry and technology of cellulosic copolymers, Springer-Verlag, Berlin

    Google Scholar 

  • Heitmann JA, Joyce TW, Prasad DY (1992) Enzyme deinking of newsprint waste. In: Srebotnik E, Messner K (eds) Biotechnology in the pulp and paper industry. Facultas- Universitätsverlag, Vienna, pp 175–180

    Google Scholar 

  • Henriksson G, Lennholm H (2009) Cellulose and carbohydrate chemistry. In: Monica EK, Gellerstedt G, Henriksson G (eds) Pulp and pare chemistry and technology. Walter de gruyter GmbH & Co, Berlin, pp 72–99

    Google Scholar 

  • Henriksson G, Christiernin M, Agnemo R (2005) Monocomponent endoglucanase treatment increases the reactivity of softwood sulphite dissolving pulp. J Ind Microbiol Biotechnol 32(5):211–214

    Article  CAS  PubMed  Google Scholar 

  • Henrissat B, Bairoch A (1996) Updating the sequence-based classification of gylcosyl hydrolases. Biochem J 316:695–696

    Article  PubMed Central  PubMed  Google Scholar 

  • Hillman D (2006) Do dissolving pulps really dissolve? Paper Asia:12–18

    Google Scholar 

  • Hinck JF, Casebier RL, Hamilton JK (1985) Dissolving pulp manufacture. In: Ingruber OV, Kocurek MJ, Wong A (eds) Pulp and paper manufacture. Joint Textbook Committee of the Paper Industry TAPPI, Atlanta 4, pp 213–243

    Google Scholar 

  • Ibarra D, Romero J, Martínez MJ, Martínez AT, Camarero S (2006) Exploring the enzymatic parameters for optimal delignification of eucalypt pulp by Laccase-Mediator. Enzyme Microb Technol 39:1319–1327

    Article  CAS  Google Scholar 

  • Ibarra D, Köpcke V, Ek M (2010) Behaviour of different monocomponent endoglucanases on the accessibility and reactivity of dissolving-grade pulps for viscose process. Enzyme Microb Technol 47(7):355–362

    Article  CAS  Google Scholar 

  • Isogai A, Usuda M, Kato T, Uryu T, Atalla RH (1989) Solid-state CP/MAS 13C NMR study of cellulose polymorphs. Macromolecules 22:3168–3172

    Article  CAS  Google Scholar 

  • Jackson LS, Heitmann JA Jr, Joyce TW (1998) Production of dissolving pulp from recovered paper using enzymes. Tappi J 81:171

    CAS  Google Scholar 

  • Jayme G, Schenck U (1949) Die Auswirkungverschiedeneralkalischereredelungsbedingungen auf das Verhalten von Zellstoffenbei der Acetylierung. Das Papier 3:469–476

    CAS  Google Scholar 

  • Kirk TK, Jeffries TW (1996) Roles for microbial enzymes in pulp and paper processing. In: Jeffries TW, Viikari L (eds) Enzymes for pulp and paper processing. American Chemical Society Symposium; 655, pp 2–14

    Google Scholar 

  • Köpcke V (2010) Conversion of wood and non-wood paper-grade pulps to dissolving-grade pulps. Doctoral dissertation, KTH

    Google Scholar 

  • Köpcke V, Ibarra D, Ek M (2008) Increasing accessibility and reactivity of paper grade pulp by enzymatic treatment for use as dissolving pulp. Nordic Pulp Pap Res J 23(4):363–368

    Article  Google Scholar 

  • Krässig HA (1993) Accessibility in intercrystalline reactions. In: Krässig HA (ed) Cellulose: structure, accessibility and reactivity, 1st edn. Gordon and Breach Science Publishers, Amsterdam, pp 187–214

    Google Scholar 

  • Kvarnlöf N, Germgård U, Jönsson L, Söderlund CA (2005) Enzymatic treatment to increase the reactivity of a dissolving pulp for viscose preparation. Appita J 59(3):242–246

    Google Scholar 

  • Kvarnlöf N, Germgård U, Jönsson L, Söderlund CA (2007) Optimization of the enzymatic activation of a dissolving pulp before viscose manufacture. Tappi J 6:6

    Google Scholar 

  • Losonczi A, Csiszar E, Szakacs G, Bezur L (2005) Role of the EDTA chelating agent in bioscouring of cotton. Textile Res J 75:411–417

    Article  CAS  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol R 66(3):506–577

    Article  CAS  Google Scholar 

  • Mansfield SD, Mooney C, Saddler JN (1999) Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Prog 15(5):804–816

    Article  CAS  PubMed  Google Scholar 

  • Mäntyranta H (2013) Dissolving pulp provides completely recyclable textiles. http://www.forestplatform.org/en/dissolving-pulp-provides-completely-recyclable-textiles. Accessed 12 Aug 2014

  • McGinnis G, Shafizadeh F (1979) Cellulose and hemicellulose. In: Casey JP (ed) Pulp and paper chemistry and chemical technology, vol 1, 3rd edn. Wiley, New York, pp 1–8

    Google Scholar 

  • Miao Q, Chen L, Huang L, Tian C, Zheng L, Ni Y (2014) A process for enhancing the accessibility and reactivity of hardwood kraft-based dissolving pulp for viscose rayon production by cellulase treatment. Bioresour Technol 154:109–113

    Article  CAS  PubMed  Google Scholar 

  • Mosai S, Wolfaardt JF, Prior BA, Christov LP (1999) Evaluation of selected lignin degrading fungi for biosulfite pulping. Bioresour Technol 68:89–93

    Article  CAS  Google Scholar 

  • Motta FL, Andrade CCP, Santana MHA (2013) A review of xylanase production by the fermentation of xylan: classification, characterization and applications. In: Chandel AK, Silva SS (eds) Biochemistry, genetics and molecular biology “sustainable degradation of lignocellulosic biomass – techniques, applications and commercialization”. Intech, Rijeka, pp 251–283

    Google Scholar 

  • Östberg L (2012) Some aspects on pulp pre-treatment prior to viscose preparation Licentiate thesis, Karlstad University Studies, Karlstad

    Google Scholar 

  • Paës G, Berrin JG, Beaugrand J (2012) GH11 xylanases: structure/function/properties relationships and applications. Biotechnol Adv 30:564–592

    Article  PubMed  Google Scholar 

  • Pathak P, Bhardwaj NK, Singh AK (2011) Optimization of chemical and enzymatic deinking of photocopier waste paper. BioResources 6(1):447–463

    CAS  Google Scholar 

  • Prasad DY, Heitmann JA, Joyce TW (1993) Enzymatic deinking of colored offset newsprint. Nordic Pulp Pap Res J 8(2):28–286

    Article  Google Scholar 

  • Puls J, Janzon R, Saake B (2006) Comparative removal of hemicelluloses from paper pulps using nitren, cuen, NaOH, and KOH. Lenzinger Berichte 86:63–70

    CAS  Google Scholar 

  • Quintana E, Valls C, Vidal T, Roncero MB (2013) An enzyme-catalysed bleaching treatment to meet dissolving pulp characteristics for cellulose derivatives applications. Bioresour Technol 148:1–8

    Article  CAS  PubMed  Google Scholar 

  • Rabinovich ML, Melnick MS, Bolobova AV (2002a) Microbial cellulases (review). Appl Biochem Microbiol 38(4):305–321

    Article  CAS  Google Scholar 

  • Rabinovich ML, Melnick MS, Bolobova AV (2002b) The structure and mechanism of action of cellulolytic enzymes. Biochemistry 67(8):850–871

    CAS  PubMed  Google Scholar 

  • Rahkamo L, Siika-Aho M, Vehviläinen M, Dolk M, Viikari L, Nousiainen P, Buchert J (1996) Modification of hardwood dissolving pulp with purified Trichoderma reesei cellulases. Cellulose 3(3):153–163

    Article  CAS  Google Scholar 

  • Rahkamo L, Siika-Aho M, Viikari L, Leppänen T, Buchert J (1998) Effects of cellulases and hemicellulases on the alkaline solubility of dissolving pulps. Holzforschung 52(6):630–634

    Article  CAS  Google Scholar 

  • Rye CS, Withers SG (2000) Glycosidase mechanisms. Curr Opin Chem Biol 4:573–580

    Article  CAS  PubMed  Google Scholar 

  • Scott GM, Akhtar M, Lentz M, Sykes M, Abubakr S (1996) Biosulfite pulping using Ceriporiopsis subvermispora. In: Srebotnik E, Messner K (eds) Biotechnology in the pulp and paper industry. Facultas-Universitätsverlag, Vienna, pp 217–220

    Google Scholar 

  • Senior DJ, Hamilton J (1991) Use of xylanase to decrease the formation of AOX in kraft pulp bleaching. In: Proceedings of environment conference of the technical section, Canadian Pulp and Paper Association, 8–10 October, Quebec, pp 63–67

    Google Scholar 

  • Senior DJ, Hamilton J (1992) Reduction in chlorine use during bleaching of kraft pulp following xylanase treatment. Tappi J 75(11):125–130

    CAS  Google Scholar 

  • Shrinivasan MC (1992) Lignocellulose biotechnology, recent advances and technology prospects. In: Subba RNS, Balagopalan C, Ramakrishna SV (eds) New trends in biotechnology. Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi

    Google Scholar 

  • Sixta H (2006) Handbook of pulp, 1st edn. Wiley, Weinheim, p 2

    Book  Google Scholar 

  • Sixta H, Iakovlev M, Testova L, Roselli A, Hummel M, Borrega M, Heiningen A, Froschauer C, Schottenberger H (2013) Novel concepts of dissolving pulp production. Cellulose 20:1547–1561

    Article  CAS  Google Scholar 

  • Sunna A, Antranikian G (1997) Xylanolytic enzymes from fungi and bacteria. Crit Rev Biotechnol 7:425–430

    Google Scholar 

  • Suurnäkki A, Tenkanen M, Siika-Aho M, Niku-Paavola M-L, Viikari L, And Buchert J (2000) Trichoderma reesei cellulases and their core domains in the hydrolysis and modification of chemical pulp. Cellulose 7:189–209

    Article  Google Scholar 

  • Teeri TT (1998) Fibre modification in nature: modes of action of cellulolytic enzymes. In: 7th international conference on biotechnology in the pulp and paper industry, Vancouver, pp A171–A174

    Google Scholar 

  • Thakur VV, Jain RK, Mathur RM (2012) Studies on xylanase and laccase enzymatic prebleaching to reduce chlorine based chemicals during CEH and ECF bleaching. BioResources 7(2):2220–2235

    Article  CAS  Google Scholar 

  • Treiber E (1987) Quality demands for dissolving pulps for HWM fibers. Swedish Pulp and Paper Institute (STFI), Stockholm

    Google Scholar 

  • Verma P, Bhardwaj NK, Singh SP (2013) Improvement in pulp dewatering through cellulases. Ippta J 25(3):105–108

    Google Scholar 

  • Viikari L (2002) Trends in pulp and paper biotechnology. In: Viikari L, Lantto R (eds) Biotechnology in the pulp and paper industry: 8th ICBPPI meeting. Progress in biotechnology, vol 21. Elsevier, Amsterdam/New York, pp 1–5

    Chapter  Google Scholar 

  • Vitolo M (2009) Industrial uses of enzymes. In: Doelle HW, Rokem S (eds) Biotechnology VI, vol 6. Eolss, Paris, pp 135–138

    Google Scholar 

  • Wallis AFA, Wearne RH (1990) Chemical cellulose from radiata pine kraft pulp. Appita J 43(5):355–357

    CAS  Google Scholar 

  • Wang H, Pang B, Wu K, Kong F, Li B, Mu X (2014) Two stages of treatments for upgrading bleached softwood paper grade pulp to dissolving pulp for viscose production. Biochem Eng J 82:183–187

    Article  Google Scholar 

  • Wollboldt RP, Zuckerstätter G, Weber HK, Larsson PT, Sixta H (2010) Accessibility, reactivity and supramolecular structure of E. globulus pulps with reduced xylan content. Wood Sci Technol 44:533–546

    Article  CAS  Google Scholar 

  • Yang JL, Lou G, Eriksson K-EL (1992) The impact of xylanases on bleaching of kraft pulps. Tappi J 75(12):95–101

    CAS  Google Scholar 

  • Zhan H, Yue B, Hu W, Huang W (2000) Kraft reed pulp TCF bleaching with enzyme treatment. Cellul Chem Technol 33(1–2):53–60

    Google Scholar 

  • Zhang YHP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase system. Biotechnol Bioeng 88(7):797–824

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, Ding Y, Wu G (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8:325

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We thank the Council of Scientific and Industrial Research (CSIR) of India for support by Grant-in-aid (grant no. 09/1089/2012) for Senior Research Fellows to Prabhjot Kaur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nishi K. Bhardwaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Kaur, P., Bhardwaj, N.K., Sharma, J. (2016). Application of Microbial Enzymes in Dissolving Pulp Production. In: Shukla, P. (eds) Frontier Discoveries and Innovations in Interdisciplinary Microbiology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2610-9_8

Download citation

Publish with us

Policies and ethics