Skip to main content

Abstract

Marker-assisted selection (MAS) has revolutionized plant and animal breeding activities. MAS is based on DNA markers, which facilitate gene/QTL identification and mapping and gene/QTL transfer, and has many other applications. Some of the important issues concerning marker systems relate to their abundance, genome-wide distribution, cost and effort for marker development, ease of use, automated high-throughput genotyping, and cost per data point. Sequencing of the genome has facilitated the discovery of single nucleotide polymorphism (SNP) markers, which are abundant, almost evenly distributed throughout the genome, highly reproducible, and are amenable to ultra-high-throughput genotyping at relatively very low cost per data point. Next-generation sequencing (NGS) and third-generation sequencing (TGS) are of high throughput, simpler, cheaper, and much faster than the Sanger-Coulson sequencing. NGS and TGS technologies have allowed rapid sequencing of genomes and transcriptomes. NGS-based transcriptome sequencing (RNAseq) enables identification of thousands of SNPs located in the coding regions of the genomes. The development of SNP markers involves the discovery of SNPs, either through whole-genome/transcriptome sequencing, sequencing of the targeted genomic region, or in silico SNP mining, and validation of the discovered SNPs through various genotyping techniques. Genome sequencing also made it possible to discover and develop insertion and deletion (Indel) and epigenetic markers. This chapter describes the various DNA sequencing technologies, the strategies for discovery of SNP markers, and the low-to-medium-throughput approaches for SNP genotyping. The concept of polymorphic information content (PIC) of a marker system is explained in some details, and the selection of a marker system suitable for a given study is also discussed. The choice of the marker system for a study depends on the objectives of the project, financial resources, availability of the desired marker system in the target species, and reproducibility of the marker system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal M, Shrivastava N, Padh H (2008) Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep 27:617–631

    Article  CAS  PubMed  Google Scholar 

  • Bentley DR, Smith AJ (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Braun A, Little DP, Koster H (1997) Detecting CFTR gene mutations by using primer oligo base extension and mass spectrometry. Clin Chem 43:1151–1158

    CAS  PubMed  Google Scholar 

  • Chepelev I, Wei G, Tang Q et al (2009) Detection of single nucleotide variations in expressed exons of the human genome using RNA-Seq. Nucleic Acids Res 37:e106

    Article  PubMed Central  PubMed  Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD et al (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nature Rev Genet 12:499–510

    Article  CAS  PubMed  Google Scholar 

  • de Vienne D (ed) (2003) Molecular markers in plant genetics and biotechnology. Science Publishers, Enfield

    Google Scholar 

  • de Vienne D, Santoni S, Falque M (2003) Principal sources of molecular markers. In: de Vienne D (ed) Molecular markers in plant genetics and biotechnology. Science Publishers, Enfield, pp 3–46

    Google Scholar 

  • Deschamps S, Campbell MA (2010) Utilization of next-generation sequencing platforms in plant genomics and genetic variant discovery. Mol Breed 25:553–570

    Article  CAS  Google Scholar 

  • Edwards M (2013) Whole-genome sequencing for marker discovery. In: Henry RJ (ed) Molecular markers in plants. Wiley, UK, pp 21–34

    Google Scholar 

  • Gupta PK, Rustgi S, Mir RR (2008) Array-based high-throughput DNA markers for crop improvement. Heredity 101:5–18

    Article  CAS  PubMed  Google Scholar 

  • Landergren U, Kaiser R, Sanders J et al (1988) A ligase-mediated gene detection technique. Science 241:1077–1080

    Article  Google Scholar 

  • Livak KJ (1999) Allelic discrimination using fluorogenic probes and the 5′ nuclease assay. Genet Anal Biomol Eng 14:143–149

    Article  CAS  Google Scholar 

  • Mammadov J, Aggarwal R, Buyyarapu R et al (2012) SNP markers and their impact on plant breeding. Int J Plant Genomics vol 2012. doi.org/10.1155/2012/728398, 11 pages

  • Meksem K, Kahl G (2005) The handbook of plant genome mapping, genetic and physical mapping. WILEY-VCH Verlag GmbH & Co, KGaA, Weinheim

    Book  Google Scholar 

  • Nielsen R, Paul JS, Albrechtsen A et al (2011) Genotype and SNP calling from next-generation sequencing data. Nature Rev Genet 12:443–451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Okayama H, Curiel DT, Brantly ML et al (1989) Rapid, nonradioactive detection of mutations in the human genome by allele-specific amplification. J Lab Clin Med 114:105–113

    CAS  PubMed  Google Scholar 

  • Ozsolak F, Milos PM (2011) Transcriptome profiling using single-molecule direct RNA sequencing. Methods Mol Biol 733:51–61

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pandey V, Nutter RC, Prediger E (2008) Applied Biosystems SOLiDTM system: ligation-based sequencing. In: Janitz M (ed) Next generation genome sequencing: towards personalized medicine. Wiley-VCH, Weinheim, pp 29–42

    Chapter  Google Scholar 

  • Powell W, Morgante M, Andre C et al (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  • Ronaghi M, Karamohamed S, Patterson B et al (1996) Real-time DNA sequencing using detection of pyrophosphate release. Analytical Biochem 242:84–89

    Article  CAS  Google Scholar 

  • Salathia N, Lee HN, Sangster TA et al (2007) Indel arrays: an affordable alternative for genotyping. Plant J 51:727–37

    Article  CAS  PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schadt EE, Turner S, Kasarskis A (2010) A window into third-generation sequencing. Human Mol Genet 19:R227–R240

    Article  CAS  Google Scholar 

  • Schendure J, Ji HL (2008) Next generation DNA sequencing. Nature Biotechnol 26:1135–1145

    Article  Google Scholar 

  • Schendure J, Porreca GJ, Reppas NB et al (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309:1728–1732

    Article  Google Scholar 

  • Sobrino B, Briona M, Carracedoa A (2005) SNPs in forensic genetics: a review on SNP typing methodologies. Forensic Sci Int 154:181–194

    Article  CAS  PubMed  Google Scholar 

  • Sokolov BP (1990) Primer extension technique for the detection of single nucleotide in genomic DNA. Nucleic Acids Res 18:3671

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang DG, Fang JB, Sio CJ et al (1998) Large-scale identification, mapping and genotyping of single-nucleotide polymorphisms in the human genome. Science 280:1077–1082

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Lin M, Crenshaw A et al (2009a) High-throughput single nucleotide polymorphism genotyping using nanofluidic Dynamic Arrays. BMC Genomics 10:561–573

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang Q, Zhang B, Lu Q (2009b) Conserved region amplification polymorphism (CoRAP) a novel marker technique for plant genotyping in Salivia miltiorrhiza. Plant Mol Biol Rep 27:139–143

    Article  CAS  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009c) RNA-Seq: a revolutionary tool for transcriptomics. Nature Rev Genet 10:57–63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Author(s)

About this chapter

Cite this chapter

Singh, B.D., Singh, A.K. (2015). Sequence-Based Markers. In: Marker-Assisted Plant Breeding: Principles and Practices. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2316-0_4

Download citation

Publish with us

Policies and ethics