Skip to main content

Microstructured Reactors for Hydrogen Production from Ethanol

  • Chapter
Nanoscale and Microscale Phenomena

Abstract

The continuously increasing demand for clean and renewable energy warrants the development of renewable, nonpolluting energy resources. Hydrogen is emerging as a natural choice as a more secure and cleaner energy carrier. Fuel cells can be used to produce clean energy from hydrogen, particularly for portable applications. Hydrogen can be produced from a variety of fossil fuel sources, but to decrease the dependence on fossil fuels, hydrogen has to be produced from a renewable source. Hydrogen production from steam reforming of ethanol (a renewable fuel) has emerged as a promising alternative in recent years. For conducting this reaction on board a vehicle, a compact reactor system is required. A microchannel reactor is more efficient and attractive for this purpose, because of the high surface to volume ratio, resulting in high heat and mass transfer rates.

The reactions involved in producing CO-free hydrogen from ethanol include steam reforming of ethanol, water–gas shift reaction, and preferential oxidation of carbon monoxide. This chapter discusses the steps involved in the development of a microfuel processor for producing hydrogen from ethanol that include fabrication of the microchannels on the metal substrate, coating of the catalyst and support on the microchannels, assembly of the microchannel reactor, optimization of the catalysts for the three reactions, and, finally, heat integration of the different processes to maximize the efficiency of the fuel processor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abate K (1997) Photochemical etching of metals. Met Finish 95(1):39–44

    Article  MathSciNet  Google Scholar 

  2. Aicher T, Full J, Schaadt A (2009) A portable fuel processor for hydrogen production from ethanol in a 250 Wel fuel cell system. Int J Hydrog Energy 34(19):8006–8015, doi:http://dx.doi.org/10.1016/j.ijhydene.2009.07.064

    Article  Google Scholar 

  3. Allen DM (2004) Photochemical machining: from [‘]manufacturing’s best kept secret’ to a $6 billion per annum, rapid manufacturing process. CIRP Ann Manuf Technol 53(2):559–572

    Article  Google Scholar 

  4. Azzam KG, Babich IV, Seshan K, Lefferts L (2007) A bifunctional catalyst for the single-stage water–gas shift reaction in fuel cell applications. Part 2. Roles of the support and promoter on catalyst activity and stability. J Catal 251(1):163–171, doi: http://dx.doi.org/10.1016/j.jcat.2007.07.011

    Article  Google Scholar 

  5. Balat M, Balat H, Öz C (2008) Progress in bioethanol processing. Prog Energy Combust Sci 34(5):551–573, doi:http://dx.doi.org/10.1016/j.pecs.2007.11.001

    Article  Google Scholar 

  6. Barreto L, Makihira A, Riahi K (2003) The hydrogen economy in the 21st century: a sustainable development scenario. Int J Hydrog Energy 28(3):267–284, doi:http://dx.doi.org/10.1016/S0360-3199(02)00074-5

    Article  Google Scholar 

  7. Bion N, Epron F, Moreno M, Mariño F, Duprez D (2008) Preferential oxidation of carbon monoxide in the presence of hydrogen (PROX) over noble metals and transition metal oxides: advantages and drawbacks. Top Catal 51(1–4):76–88. doi:10.1007/s11244-008-9116-x

    Article  Google Scholar 

  8. Bowers BJ, Zhao JL, Ruffo M, Khan R, Dattatraya D, Dushman N, Beziat J-C, Boudjemaa F (2007) Onboard fuel processor for PEM fuel cell vehicles. Int J Hydrog Energy 32(10–11):1437–1442, doi:http://dx.doi.org/10.1016/j.ijhydene.2006.10.045

    Article  Google Scholar 

  9. ÇakIr O, Temel H, Kiyak M (2005) Chemical etching of Cu-ETP copper. J Mater Process Technol 162–163:275–279

    Article  Google Scholar 

  10. Cipitì F, Pino L, Vita A, Laganà M, Recupero V (2013) Experimental investigation on a methane fuel processor for polymer electrolyte fuel cells. Int J Hydrog Energy 38(5):2387–2397, doi:http://dx.doi.org/10.1016/j.ijhydene.2012.11.143

    Article  Google Scholar 

  11. Dictor R, Roberts S (1989) Influence of ceria on alumina-supported rhodium: observations of rhodium morphology made using FTIR spectroscopy. J Phys Chem 93(15):5846–5850. doi:10.1021/j100352a038

    Article  Google Scholar 

  12. Domínguez M, Cristiano G, López E, Llorca J (2011) Ethanol steam reforming over cobalt talc in a plate microreactor. Chem Eng J 176–177:280–285, doi:http://dx.doi.org/10.1016/j.cej.2011.03.087

    Article  Google Scholar 

  13. Drozda TJ (1949) Tool and manufacturing engineers handbook, vol 1. Society of Manufacturing Engineers, Michigan

    Google Scholar 

  14. Ehrfeld W, Hessel V, Lowe H (2000) Microreactors. Wiley-VCH, Weinheim

    Book  Google Scholar 

  15. Freni S, Calogero G, Cavallaro S (2000) Hydrogen production from methane through catalytic partial oxidation reactions. J Power Sources 87(1–2):28–38, doi:http://dx.doi.org/10.1016/S0378-7753(99)00357-2

    Article  Google Scholar 

  16. Germani G, Alphonse P, Courty M, Schuurman Y, Mirodatos C (2005) Platinum/ceria/alumina catalysts on microstructures for carbon monoxide conversion. Catal Today 110(1–2):114–120, doi:http://dx.doi.org/10.1016/j.cattod.2005.09.017

    Article  Google Scholar 

  17. Goula MA, Kontou SK, Tsiakaras PE (2004) Hydrogen production by ethanol steam reforming over a commercial Pd/[gamma]-Al2O3 catalyst. Appl Catal B Environ 49(2):135–144

    Article  Google Scholar 

  18. Haryanto A, Fernando S, Murali N, Adhikari S (2005) Current status of hydrogen production techniques by steam reforming of ethanol: a review. Energy Fuel 19(5):2098–2106. doi:10.1021/ef0500538

    Article  Google Scholar 

  19. Hays SA (1959) Continuous chemical milling process. United States Patent No. 2890944

    Google Scholar 

  20. Holladay JD, Wang Y, Jones E (2004) Review of developments in portable hydrogen production using microreactor technology. Chem Rev 104(10):4767–4790. doi:10.1021/cr020721b

    Article  Google Scholar 

  21. Jubb EC (1964) Comparison of copper etchants. Plating 51:311–316

    Google Scholar 

  22. Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26(4):361–375, doi:http://dx.doi.org/10.1016/j.biombioe.2003.08.002

    Article  Google Scholar 

  23. Kiwi-Minsker L, Renken A (2005) Microstructured reactors for catalytic reactions. Catal Today 110(1–2):2–14

    Article  Google Scholar 

  24. Ko E-Y, Park ED, Seo KW, Lee HC, Lee D, Kim S (2006) A comparative study of catalysts for the preferential CO oxidation in excess hydrogen. Catal Today 116(3):377–383, doi:http://dx.doi.org/10.1016/j.cattod.2006.05.072

    Article  Google Scholar 

  25. Kolb G (2013) Review: microstructured reactors for distributed and renewable production of fuels and electrical energy. Chem Eng Process Process Intensif 65:1–44, doi:http://dx.doi.org/10.1016/j.cep.2012.10.015

    Article  MathSciNet  Google Scholar 

  26. Kolb G, Hessel V (2004) Micro-structured reactors for gas phase reactions. Chem Eng J 98(1–2):1–38

    Article  Google Scholar 

  27. Kolb G, Men Y, Schelhaas KP, Tiemann D, Zapf R, Wilhelm J (2010) Development work on a microstructured 50 kW ethanol fuel processor for a small-scale stationary hydrogen supply system. Ind Eng Chem Res 50(5):2554–2561. doi:10.1021/ie100602w

    Article  Google Scholar 

  28. Kolb G, Pennemann H, Zapf R (2005) Water-gas shift reaction in micro-channels—Results from catalyst screening and optimisation. Catal Today 110(1–2):121–131, doi:http://dx.doi.org/10.1016/j.cattod.2005.09.012

    Article  Google Scholar 

  29. Kolb G, Schürer J, Tiemann D, Wichert M, Zapf R, Hessel V, Löwe H (2007) Fuel processing in integrated micro-structured heat-exchanger reactors. J Power Sources 171(1):198–204, doi:http://dx.doi.org/10.1016/j.jpowsour.2007.01.006

    Article  Google Scholar 

  30. Kreml JF (1972) Chemical milling method and bath for steel. United States Patent No. 3676094

    Google Scholar 

  31. Kumar J, Kunzru D (2012) Preferential oxidation of carbon monoxide on Pt/gamma-Al2O3 catalyst in a micro-packed bed reactor. Paper presented at the Chemcon-2012, Jalandhar

    Google Scholar 

  32. Laget O, Richard S, Serrano D, Soleri D (2012) Combining experimental and numerical investigations to explore the potential of downsized engines operating with methane/hydrogen blends. Int J Hydrog Energy 37(15):11514–11530, doi:http://dx.doi.org/10.1016/j.ijhydene.2012.03.153

    Article  Google Scholar 

  33. Lindner WE, Coggins DL (1986) Steel etchant. United States Patent No. 4592854

    Google Scholar 

  34. Lopez E, Gepert V, Gritsch A, Nieken U, Eigenberger G (2012) Ethanol steam reforming thermally coupled with fuel combustion in a parallel plate reactor. Ind Eng Chem Res 51(11):4143–4151. doi:10.1021/ie202364y

    Article  Google Scholar 

  35. Lyman T (1967) Metals handbook, vol 3. American Society of Metals, Metals Park

    Google Scholar 

  36. Matthews IC, Hanneman GB (1941) Etching solution. United States Patent No. 2266430

    Google Scholar 

  37. McGlade C, Speirs J, Sorrell S (2013) Unconventional gas – a review of regional and global resource estimates. Energy 55:571–584, doi:http://dx.doi.org/10.1016/j.energy.2013.01.048

    Article  Google Scholar 

  38. Meille V (2006) Review on methods to deposit catalysts on structured surfaces. Appl Catal A Gen 315:1–17, doi:http://dx.doi.org/10.1016/j.apcata.2006.08.031

    Article  Google Scholar 

  39. Men Y, Kolb G, Zapf R, Hessel V, Löwe H (2007) Ethanol steam reforming in a microchannel reactor. Process Saf Environ Prot 85(5):413–418

    Article  Google Scholar 

  40. Moharana MK, Peela NR, Khandekar S, Kunzru D (2011) Distributed hydrogen production from ethanol in a microfuel processor: issues and challenges. Renew Sust Energ Rev 15(1):524–533, doi:http://dx.doi.org/10.1016/j.rser.2010.08.011

    Article  Google Scholar 

  41. Montini T, De Rogatis L, Gombac V, Fornasiero P, Graziani M (2007) Rh(1 %)@CexZr1-xO2-Al2O3 nanocomposites: active and stable catalysts for ethanol steam reforming. Appl Catal B Environ 71(3–4):125–134

    Article  Google Scholar 

  42. Ni M, Leung DYC, Leung MKH (2007) A review on reforming bio-ethanol for hydrogen production. Int J Hydrog Energy 32(15):3238–3247

    Article  Google Scholar 

  43. Ni M, Leung MKH, Leung DYC (2008) Energy and exergy analysis of hydrogen production by a proton exchange membrane (PEM) electrolyzer plant. Energy Convers Manag 49(10):2748–2756, doi:http://dx.doi.org/10.1016/j.enconman.2008.03.018

    Article  Google Scholar 

  44. Ni M, Leung MKH, Leung DYC (2008) Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC). Int J Hydrog Energy 33(9):2337–2354, doi:http://dx.doi.org/10.1016/j.ijhydene.2008.02.048

    Article  Google Scholar 

  45. Northrop WF, Choi SO, Thompson LT (2012) Thermally integrated fuel processor design for fuel cell applications. Int J Hydrog Energy 37(4):3447–3458, doi:http://dx.doi.org/10.1016/j.ijhydene.2011.11.034

    Article  Google Scholar 

  46. O’Connell M, Kolb G, Schelhaas K-P, Schuerer J, Tiemann D, Keller S, Reinhard D, Hessel V (2010) Investigation on the combined operation of water gas shift and preferential oxidation reactor system on the kW scale. Ind Eng Chem Res 49(21):10917–10923. doi:10.1021/ie1005614

    Article  Google Scholar 

  47. O’Connell M, Kolb G, Schelhaas KP, Wichert M, Tiemann D, Pennemann H, Zapf R (2012) Towards mass production of microstructured fuel processors for application in future distributed energy generation systems: a review of recent progress at IMM. Chem Eng Res Des 90(1):11–18

    Article  Google Scholar 

  48. Ockwig NW, Nenoff TM (2007) Membranes for hydrogen separation. Chem Rev 107(10):4078–4110. doi:10.1021/cr0501792

    Article  Google Scholar 

  49. Oh SH, Sinkevitch RM (1993) Carbon monoxide removal from hydrogen-rich fuel cell feedstreams by selective catalytic oxidation. J Catal 142(1):254–262, doi:http://dx.doi.org/10.1006/jcat.1993.1205

    Article  Google Scholar 

  50. Ouyang X, Bednarova L, Besser RS, Ho P (2005) Preferential oxidation (PrOx) in a thin-film catalytic microreactor: advantages and limitations. AIChE J 51(6):1758–1772. doi:10.1002/aic.10438

    Article  Google Scholar 

  51. Peela NR, Mubayi A, Kunzru D (2009) Washcoating of γ-alumina on stainless steel microchannels. Catal Today 147(Supplement):S17–S23, doi:http://dx.doi.org/10.1016/j.cattod.2009.07.026

    Article  Google Scholar 

  52. Peela NR, Mubayi A, Kunzru D (2011) Steam reforming of ethanol over Rh/CeO2/Al2O3 catalysts in a microchannel reactor. Chem Eng J 167(2–3):578–587, doi:http://dx.doi.org/10.1016/j.cej.2010.09.081

    Article  Google Scholar 

  53. Peela NR, Sandupatla AS, Rao PLP, Kunzru D (2012) Hydrogen production from ethanol in a microchannel reactor. In: International conference on sustainable energy and environmental protection, Dublin, 2012

    Google Scholar 

  54. Peela NR, Sandupatla AS, Kunzru D (2014) Development of a microfuel processor: oxidative steam reforming of ethanol and water-gas shift reaction on noble metal catalysts in a microreactor. Int J Environ Eng 6:78–90

    Article  Google Scholar 

  55. Piscina PR, Homs N (2008) Use of biofuels to produce hydrogen (reformation processes). Chem Soc Rev 37:2459–2467

    Article  Google Scholar 

  56. Radhakrishnan R, Willigan RR, Dardas Z, Vanderspurt TH (2006) Water gas shift activity of noble metals supported on ceria-zirconia oxides. AIChE J 52(5):1888–1894. doi:10.1002/aic.10785

    Article  Google Scholar 

  57. Rao PN, Kunzru D (2007) Fabrication of microchannels on stainless steel by wet chemical etching. J Micromech Microeng 17(12):N99

    Article  Google Scholar 

  58. Rao PLP, Kunzru D (2011) Compact microfuel processor for hydrogen production from ethanol. Chemcon-2011, Bangalore, 2011

    Google Scholar 

  59. Ricote S, Jacobs G, Milling M, Ji Y, Patterson PM, Davis BH (2006) Low temperature water-gas shift: characterization and testing of binary mixed oxides of ceria and zirconia promoted with Pt. Appl Catal A Gen 303(1):35–47

    Article  Google Scholar 

  60. Roh H-S, Wang Y, King D (2008) Selective production of H2 from ethanol at low temperatures over Rh/ZrO2–CeO2 catalysts. Top Catal 49(1):32–37. doi:10.1007/s11244-008-9066-3

    Article  Google Scholar 

  61. Romero-Sarria F, Vargas JC, Roger A-C, Kiennemann A (2008) Hydrogen production by steam reforming of ethanol: study of mixed oxide catalysts Ce2Zr1.5Me0.5O8: comparison of Ni/Co and effect of Rh. Catal Today 133–135:149–153

    Article  Google Scholar 

  62. Rossetti I, Biffi C, Tantardini GF, Raimondi M, Vitto E, Alberti D (2012) 5kWe + 5kWt reformer-PEMFC energy generator from bioethanol first data on the fuel processor from a demonstrative project. Int J Hydrog Energy 37(10):8499–8504, doi:http://dx.doi.org/10.1016/j.ijhydene.2012.02.095

    Article  Google Scholar 

  63. Ruettinger W, Ilinich O, Farrauto RJ (2003) A new generation of water gas shift catalysts for fuel cell applications. J Power Sources 118(1–2):61–65, doi:http://dx.doi.org/10.1016/S0378-7753(03)00062-4

    Article  Google Scholar 

  64. Sandupatla AS (2010) Water-gas shift reaction in microstructured reactor using noble metal catalyst. M.Tech. thesis, Department of Chemical Engineering, Indian Institute of Technology, Kanpur

    Google Scholar 

  65. Seris ELC, Abramowitz G, Johnston AM, Haynes BS (2005) Demonstration plant for distributed production of hydrogen from steam reforming of methane. Chem Eng Res Des 83(6):619–625, doi:http://dx.doi.org/10.1205/cherd.04353

    Article  Google Scholar 

  66. Seris ELC, Abramowitz G, Johnston AM, Haynes BS (2008) Scaleable, microstructured plant for steam reforming of methane. Chem Eng J 135(1):S9–S16, doi:http://dx.doi.org/10.1016/j.cej.2007.07.018

    Article  Google Scholar 

  67. Shi L, Yang G, Tao K, Yoneyama Y, Tan Y, Tsubaki N (2013) An introduction of CO2 conversion by dry reforming with methane and new route of low-temperature methanol synthesis. Acc Chem Res 46(8):1838–1847. doi:10.1021/ar300217j

    Article  Google Scholar 

  68. Snyder HB, Rosenberg LM (1960) Chemical milling. United States Patent No. 2940838

    Google Scholar 

  69. Triphob N, Wongsakulphasatch S, Kiatkittipong W, Charinpanitkul T, Praserthdam P, Assabumrungrat S (2012) Integrated methane decomposition and solid oxide fuel cell for efficient electrical power generation and carbon capture. Chem Eng Res Des 90(12):2223–2234, doi:http://dx.doi.org/10.1016/j.cherd.2012.05.014

    Article  Google Scholar 

  70. Vaidya PD, Rodrigues AE (2006) Insight into steam reforming of ethanol to produce hydrogen for fuel cells. Chem Eng J 117(1):39–49

    Article  Google Scholar 

  71. Valentini M, Groppi G, Cristiani C, Levi M, Tronconi E, Forzatti P (2001) The deposition of γ-Al2O3 layers on ceramic and metallic supports for the preparation of structured catalysts. Catal Today 69(1–4):307–314, doi:http://dx.doi.org/10.1016/S0920-5861(01)00383-2

    Article  Google Scholar 

  72. Wang J, Ryan D, Anthony EJ (2011) Reducing the greenhouse gas footprint of shale gas. Energ Policy 39(12):8196–8199, doi:http://dx.doi.org/10.1016/j.enpol.2011.10.013

    Article  Google Scholar 

  73. Weber CL, Clavin C (2012) Life cycle carbon footprint of shale gas: review of evidence and implications. Environ Sci Technol 46(11):5688–5695. doi:10.1021/es300375n

    Article  Google Scholar 

  74. Zalc JM, Löffler DG (2002) Fuel processing for PEM fuel cells: transport and kinetic issues of system design. J Power Sources 111(1):58–64, doi:http://dx.doi.org/10.1016/S0378-7753(02)00269-0

    Article  Google Scholar 

Download references

Acknowledgment

The financial support from the Department of Science and Technology, New Delhi, under the IRHPA Scheme is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Kunzru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Peela, N.R., Kunzru, D. (2015). Microstructured Reactors for Hydrogen Production from Ethanol. In: Joshi, Y., Khandekar, S. (eds) Nanoscale and Microscale Phenomena. Springer Tracts in Mechanical Engineering. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2289-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2289-7_12

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2288-0

  • Online ISBN: 978-81-322-2289-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics