Skip to main content

Advertisement

Log in

Selective Production of H2 from Ethanol at Low Temperatures over Rh/ZrO2–CeO2 Catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

A series of Rh catalysts on various supports (Al2O3, MgAl2O4, ZrO2, and ZrO2–CeO2) have been applied to H2 production from the ethanol steam reforming reaction. In terms of ethanol conversion at low temperatures (below 450 °C) with 1wt% Rh catalysts, the activity decreases in the order: Rh/ZrO2–CeO2 > Rh/Al2O3 > Rh/MgAl2O4 > Rh/ZrO2. Support plays a very important role on product selectivity at low temperatures (below 450 °C). Acidic or basic supports favor ethanol dehydration, while ethanol dehydrogenation is favored over neutral supports at low temperatures. The Rh/ZrO2–CeO2 catalyst exhibits the highest CO2 selectivity up to 550 °C, which is due to the highest water gas shift (WGS) activity at low temperatures. Among the catalysts evaluated in this study, the 2wt% Rh/ZrO2–CeO2 catalyst exhibited the highest H2 yield at 450 °C, which is possibly due to the high oxygen storage capacity of ZrO2–CeO2 resulting in efficient transfer of mobile oxygen species from the H2O molecule to the reaction intermediate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rostrup-Nielsen JR (1984) In: Anderson JR, Boudart M (eds) Catalysis, science and technology, vol 5. Springer, Berlin, p 1

    Google Scholar 

  2. Cao C, Xia G, Holladay J, Jones E, Wang Y (2004) Appl Catal A 262:19

    Article  CAS  Google Scholar 

  3. Song CS (2002) Catal Today 77:17

    Article  CAS  Google Scholar 

  4. Velu S, Suzuki K (2003) Topics Catal 22:235

    Article  CAS  Google Scholar 

  5. Huber GW, Shabaker JW, Dumesic JA (2003) Science 300:2075

    Article  CAS  Google Scholar 

  6. Cortright RD, Davda RR, Dumesic JA (2002) Nature 418:964

    Article  CAS  Google Scholar 

  7. Deluga GA, Salge JR, Schmidt LD, Verykios XE (2004) Science 303:993

    Article  CAS  Google Scholar 

  8. Kugai J, Velu S, Song C (2005) Catal Lett 101:255

    Article  CAS  Google Scholar 

  9. Llorca J, Piscina de la PR, Dalmon JA, Sales J, Homs N (2003) Appl Catal B 43:355

    Article  CAS  Google Scholar 

  10. Velu S, Satoh N, Gopinath CS, Suzuki K (2002) Catal Lett 82:145

    Article  CAS  Google Scholar 

  11. Liguras DK, Kondarides DI, Verykios XE (2003) Appl Catal B 43:345

    Article  CAS  Google Scholar 

  12. Breen JP, Burch R, Coleman HM (2002) Appl Catal B 39:65

    Article  CAS  Google Scholar 

  13. Vasudeva K, Mitra N, Umasankar P, Dhingra SC (1996) Int J Hyrogen Energy 21:13

    Article  CAS  Google Scholar 

  14. Fishtik I, Alexander A, Datta R, Geana D (2000) Int J Hyrogen Energy 25:31

    Article  CAS  Google Scholar 

  15. Freni S, Maggio G, Cavallaro S (1996) J Power Sources 62:67

    Article  CAS  Google Scholar 

  16. Tsiakaras P, Demin A (2001) J Power Sources 102:210

    Article  CAS  Google Scholar 

  17. Trovarelli A, de Leitenburg C, Boaro M, Dolcetti G (2000) Catal Today 50:353

    Article  Google Scholar 

  18. Trovarelli A (1996) Catal Rev-Sci Eng 38:439

    Article  CAS  Google Scholar 

  19. Kaspar J, Fornasiero P, Graziani M (1999) Catal Today 50:285

    Article  CAS  Google Scholar 

  20. Rossignol S, Gerard F, Duprez D (1999) J Mater Chem 9:1615

    Article  CAS  Google Scholar 

  21. Thammachart M, Meeyoo V, Risksomboon T, Osuwan S (2001) Catal Today 68:53

    Article  CAS  Google Scholar 

  22. Roh H-S, Jun K-W, Dong W-S, Park S-E, Baek Y-S (2001) Catal Lett 74:31

    Article  CAS  Google Scholar 

  23. Roh H-S, Jun K-W, Dong W-S, Chang J-S, Park S-E, Joe Y-I (2002) J Mol Catal A 181:137

    Article  CAS  Google Scholar 

  24. Potdar HS, Roh H-S, Jun K-W, Ji M, Liu Z-W (2002) Catal Lett 84:95

    Article  CAS  Google Scholar 

  25. Roh H-S, Potdar HS, Jun K-W, Kim J-W, Oh Y-S (2004) Appl Catal A 276:231

    Article  CAS  Google Scholar 

  26. Roh H-S, Potdar HS, Jun K-W (2004) Catal Today 93–95:39

    Article  Google Scholar 

  27. Diagne C, Idriss H, Kiennemann A (2002) Catal Commun 3:565

    Article  CAS  Google Scholar 

  28. Diagne C, Idriss H, Pearson K, Gomez-Garcia MA, Kiennemann A (2004) C R Chimie 7:617

    CAS  Google Scholar 

  29. Palo DR, Holladay JD, Rozmiarek RT, Guzman-Leong CE, Wang Y, Hu J, Chin Y-H, Dagle RA, Baker EG (2002) J Power Sources 108:28

    Article  CAS  Google Scholar 

  30. Dall’Agnol C, Gervasini A, Morazzoni F, Pinna F, Strukul G, Zanderighi L (1985) J Catal 96:106

    Article  CAS  Google Scholar 

  31. Jozwiak WK (1986) React Kinet Catal Lett 30:345

    Article  CAS  Google Scholar 

  32. Cavallaro S (2000) Energy Fuels 14:1195

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Department of Energy’s Office of Hydrogen, Fuel Cells, and Infrastructure Technologies. Most of work was performed in the Environmental Molecular Science Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory in Richland, WA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roh, HS., Wang, Y. & King, D.L. Selective Production of H2 from Ethanol at Low Temperatures over Rh/ZrO2–CeO2 Catalysts. Top Catal 49, 32–37 (2008). https://doi.org/10.1007/s11244-008-9066-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-008-9066-3

Keywords

Navigation