Skip to main content

Antioxidants and Other Potent Strategies to Reduce Oxidative Stress in Semen

  • Chapter
  • First Online:
Free Radicals in Human Health and Disease
  • 2339 Accesses

Abstract

Oxidative stress (OS) has been considered a major contributory factor to the male infertility. It is the result of imbalance between the reactive oxygen species (ROS) and antioxidants in the body which can lead to sperm damage, deformity, and eventually male infertility. Although high concentrations of the ROS cause sperm pathology (ATP depletion) leading to insufficient axonemal phosphorylation, lipid peroxidation, and loss of motility and viability, but many evidences demonstrate that low and controlled concentrations of these ROS play an important role in sperm physiological processes such as capacitation, acrosome reaction, and signaling processes to ensure fertilization. ROS are also generated during cryopreservation of spermatozoa for AI practices. To reduce the oxidative stress, there are certain compounds and reactions which dispose, scavenge, and suppress the formation of ROS or oppose their actions are called antioxidants. Currently, many antioxidants are under investigation. The supplementation of a cryopreservation extender with antioxidant has been shown to provide a cryoprotective effect on mammalian sperm quality. This chapter explains the impacts of oxidative stress and reactive oxygen species on spermatozoa functions, causes of ROS generation, and antioxidative strategies to reduce this OS. This study also suggests that antioxidant supplementation could be of clinical importance in prolonging the spermatozoal storage for assisted reproductive techniques (ARTs) like artificial insemination (AI), in vitro fertilization (IVF), and intrauterine insemination (IUI) purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aitken RJ, Keith TJ, Robertson SA (2012) Reactive oxygen species and review sperm function – in sickness and in health. J Androl 33:1096–1106

    Article  CAS  PubMed  Google Scholar 

  2. Agarwal A, Gupta S, Sharma RK (2005) Role of oxidative stress in female reproduction. Reprod Biol Endocrinol 3:28

    Article  PubMed Central  PubMed  Google Scholar 

  3. Aitken RJ, Clarkson JS (1988) Generation of reactive oxygen species, lipid peroxidation and human sperm function. Biol Reprod 40:183–197

    Google Scholar 

  4. Aitken RJ, Gordon E, Harkiss D et al (1998) Relative impact of oxidative stress on the functional competence and genomic integrity of human spermatozoa. Biol Reprod 59:1037–1046

    Article  CAS  PubMed  Google Scholar 

  5. Alvarez JG, Storey BT (1984) Lipid peroxidation and the reaction of superoxide and hydrogen peroxide in mouse spermatozoa. Biol Reprod 30:833–841

    Article  CAS  PubMed  Google Scholar 

  6. Dandekar SP, Nadkarni GD, Kulkarni VS et al (2002) Lipid peroxidation and antioxidant enzymes in male infertility. J Postgrad Med 48:186–189

    CAS  PubMed  Google Scholar 

  7. Bansal AK (2000) Role of Mn2+ and Cd2+ in the human ejaculated spermatozoa under oxidative stress – lipid peroxidation, thiol redox ratio and motility. M.Sc. (Hons) thesis, Panjab University, Chandigarh

    Google Scholar 

  8. Miller JK, Slebodzinska EB (1993) Oxidative stress, antioxidants and animal function. J Dairy Sci 76:2812–2823

    Article  CAS  PubMed  Google Scholar 

  9. Ochsendorf FR (1999) Infections in the male genital tract and reactive oxygen species. Hum Reprod Update 5:399–420

    Article  CAS  PubMed  Google Scholar 

  10. Agarwal A, Nallela KP, Allamaneni SS et al (2004) Role of antioxidants in treatment of male infertility: an overview of the literature. Reprod Biomed Online 8:616–627

    Article  CAS  PubMed  Google Scholar 

  11. Rhee SG (2006) Cell signaling H2O2, a necessary evil for cell signaling. Science 312:1882–1883

    Article  PubMed  Google Scholar 

  12. Ford WC (2001) Reactive oxygen species and sperm. Hum Fertil (Camb) 4:77–78

    Article  CAS  Google Scholar 

  13. Agarwal A, Makker K, Sharma R (2008) Clinical relevance of oxidative stress in male factor infertility an update. Am J Reprod Immunol 59:2–11

    Article  CAS  PubMed  Google Scholar 

  14. Sanocka D, Kurpisz M (2004) Reactive oxygen species and sperm cells. Reprod Biol Endocrinol 2:12–26

    Article  PubMed Central  PubMed  Google Scholar 

  15. Sharma RK, Agarwal A (1996) Role of reactive oxygen species in male infertility. Urology 48:835–850

    Article  CAS  PubMed  Google Scholar 

  16. Agarwal A, Prabakaran SA (2005) Mechanism, measurement and prevention of oxidative stress in female reproductive physiology. Indian J Exp Biol 43:963–974

    CAS  PubMed  Google Scholar 

  17. Sikka SC (2001) Relative impact of oxidative stress on male reproductive function. Curr Med Chem 8:851–862

    Article  CAS  PubMed  Google Scholar 

  18. Darley- Usmar V, Wiseman H, Halliwell B (1995) Nitric oxide and oxygen radicals. A question of balance. FEBS Lett 369:131

    Article  CAS  PubMed  Google Scholar 

  19. Kenkel S, Rolf C, Nieschlag E (2001) Occupational risk for male infertility: an analysis of patients attending a tertiary referral centre. Int J Androl 24:318–326

    Article  CAS  PubMed  Google Scholar 

  20. Gavella M, Lipovac V (1992) NADH dependent oxidoreductase (diaphorase) activity and isozyme pattern of sperm in infertile men. Arch Androl 28:135–141

    Article  CAS  PubMed  Google Scholar 

  21. Sariozkan S, Bucak MN, Tuncer PB et al (2009) The influence of cysteine and taurine on microscopic – oxidative stress parameters and fertilizing ability of bull semen following cryopreservation. Cryobiology 58:134–138

    Article  PubMed  Google Scholar 

  22. Garrido N, Meseguer M, Simon C et al (2004) Proxidative and antioxidative imbalance in human semen and its relation with male infertility. Asian J Androl 6:59–65

    CAS  PubMed  Google Scholar 

  23. Aitken RJ, Baker HW (1995) Seminal leukocytes: passengers, terrorist or good Samaritans? Hum Reprod 10:1736–1739

    CAS  PubMed  Google Scholar 

  24. Shalika S, Dugan K, Smith RD et al (1996) The effect of positive semen bacterial and ureaplasma culture on in vitro fertilization success. Hum Reprod 11:2789–2792

    Article  CAS  PubMed  Google Scholar 

  25. Aitken RJ, Fisher HM, Fulton N et al (1997) Reactive oxygen species generation by human spermatozoa is induced by exogenous NADPH and inhibited by the flavoprotein inhibitors diphenylene iodonium and quinacrine. Mol Reprod Dev 47:468–482

    Article  CAS  PubMed  Google Scholar 

  26. Hendin BN, Kolettis PN, Sharma RK et al (1999) Varicocele is associated with elevated spermatozoa reactive oxygen species production and diminished seminal plasma antioxidant capacity. J Urol 161:1831–1834

    Article  CAS  PubMed  Google Scholar 

  27. Pasqualotto FF, Sharma RK, Polts JM et al (2000) Seminal oxidative stress in patients with chronic prostates. Urology 55:881–885

    Article  CAS  PubMed  Google Scholar 

  28. Sharma RK, Posqualotto AE, Nelson DR et al (2001) Relationship between seminal white blood cell counts and oxidative stress in men treated at an infertility clinic. J Androl 22:575–583

    CAS  PubMed  Google Scholar 

  29. Saleh RA, Agarwal A, Kandirali E et al (2002) Leukocytospermia is associated with increased reactive oxygen species production by human spermatozoa. Fertil Steril 78:1215–1224

    Article  PubMed  Google Scholar 

  30. Sikka SC (1996) Oxidative stress and role of antioxidants in normal and abnormal sperm functions. Front Biosci 1:e78–e86

    CAS  PubMed  Google Scholar 

  31. Agarwal A, Allamaneni SSR, Nallella KP et al (2005) Correlation of reactive oxygen species levels with the fertilization rate after in vitro fertilization: a qualified meta-analysis. Fertil Steril 84:228–231

    Article  CAS  PubMed  Google Scholar 

  32. Chatterjee S, Gagnon C (2001) Production of reactive oxygen species by spermatozoa undergoing cooling, freezing and thawing. Mol Reprod Dev 59:451–458

    Article  CAS  PubMed  Google Scholar 

  33. O’Flaherty C, Beconi M, Beorlegui N (1997) Effect of natural antioxidants, superoxide dismutase and hydrogen peroxide on capacitation of frozen – thawed bull spermatozoa. Andrology 29:269–275

    Article  Google Scholar 

  34. Irvine DS (1996) Glutathione as a treatment for male infertility. Rev Reprod 1:6–12

    Article  CAS  PubMed  Google Scholar 

  35. Kodama H, Kuribayashi Y, Gagnon C (1996) Effect of sperm lipid peroxidation on fertilization. J Androl 17:151–157

    CAS  PubMed  Google Scholar 

  36. Rao B, Soufir JC, Martin M et al (1989) Lipid peroxidation in human spermatozoa as related to mid piece abnormalities and motility. Gamete Res 24:127–134

    Article  CAS  PubMed  Google Scholar 

  37. Bucak MN, Sariozkan S, Tuncer PB et al (2010) The effect of antioxidants on post-thawed Angora goat (Capra hircus ancryensis) sperm parameters, lipid peroxidation and antioxidant activities. Small Rumin Res 89:24–30

    Article  Google Scholar 

  38. Bansal AK, Bilaspuri GS (2008) Effect of ferrous sulphate and ascorbic acid on sperm motility, viability and lipid peroxidation of crossbred cattle bull spermatozoa. Animal 2:100–104

    Article  CAS  PubMed  Google Scholar 

  39. Twigg J, Fulton N, Gomez E et al (1998) Analysis of the impact of intracellular reactive oxygen species generation on the structural and functional integrity of human spermatozoa: lipid peroxidation, DNA fragmentation and effectiveness of antioxidants. Hum Reprod 13:1429–1436

    Article  CAS  PubMed  Google Scholar 

  40. Aitken RJ, Clarkson JS, Fishel S (1989) Generation of reactive oxygen species, lipid peroxidation and human sperm function. Biol Reprod 40:183–197

    Article  Google Scholar 

  41. Sikka SC, Rajasekaran M, Hellstrom WJ (1995) Role of oxidative stress and antioxidants in male infertility. J Androl 16:464–468

    CAS  PubMed  Google Scholar 

  42. Desai NR, Mahfouz R, Sharma R et al (2010) Reactive oxygen species levels are independent of sperm concentration, motility and abstinence in a normal healthy, proven fertile man: a longitudinal study. Fertil Steril 94:1541–1543

    Article  CAS  PubMed  Google Scholar 

  43. Bansal AK, Bilaspuri GS (2010) Impacts of oxidative stress and antioxidants on semen functions. Vet Med Int 2011:1–7

    Article  Google Scholar 

  44. Bucak MN, Atessahin A, Varisli O et al (2007) The influence of trehalose, taurine, cysteamine and hyaluronan on ram semen. Microscopic and oxidative stress parameters after freeze-thawing process. Theriogenology 67:1060–1067

    Article  CAS  PubMed  Google Scholar 

  45. Bucak MN, Tuncer PB, Sariozkan S et al (2009) Comparison of the effects of glutamine and an amino acid solution on post-thawed ram sperm parameters, lipid peroxidation and anti-oxidant activities. Small Rumin Res 81:13–17

    Article  Google Scholar 

  46. Bucak MN, Atessahin, Yuce A (2008) Effect of antioxidant and oxidative stress parameters on ram semen after the freeze – thawing process. Small Rumin Res 75:128–134

    Article  Google Scholar 

  47. Agarwal A, Nallella KP, Allamaneni SSR et al (2004) Role of antioxidants in treatment of male infertility: an overview of the literature. Reprod Biol Med 8:616–627

    CAS  Google Scholar 

  48. Yousef MI, Abdallah GA, Kamel KI (2003) Effect of ascorbic acid and vitamin E supplementation on semen quality and biochemical parameters of male rabbits. Anim Reprod Sci 76:99–111

    Article  CAS  PubMed  Google Scholar 

  49. Cheema RS, Bansal AK, Bilaspuri GS (2009) Manganese provides antioxidant protection for sperm cryopreservation that may offer new consideration for clinical fertility. Oxidative Med Cell Longev 2:147–154

    Article  Google Scholar 

  50. Said TM, Grunewald S, Paasch U et al (2005) Effects of magnetic activated cell sorting on sperm motility and cryopreserved rates. Fertil Steril 83:1442–1446

    Article  PubMed  Google Scholar 

  51. Uysal O, Bucak MN (2007) Effects of oxidized glutathione, bovine serum albumin, cysteine and lycopene on the quality of frozen thawed ram semen. Acta Vet Brno 76:383–390

    Article  CAS  Google Scholar 

  52. Chatterjee S, Lamirande E, Gagnon C (2001) Cryopreservation alters membrane sulfhydryl status of bull spermatozoa: protection by oxidized glutathione. Mol Reprod Dev 60:498–506

    Article  CAS  PubMed  Google Scholar 

  53. Reddy NSS, Mohanarao GJ, Atreja SK (2010) Effects of adding taurine and trehalose to a tris – based egg yolk extender on buffalo (Bubalua bubalis) sperm quality following cryopreservation. Anim Reprod Sci 119:183–190

    Article  CAS  Google Scholar 

  54. Purdy PH (2006) A review on goat sperm cryopreservation. Small Rumin Res 6:215–225

    Article  Google Scholar 

  55. Chen Y, Foote RH, Brockett CC (1993) Effect of sucrose, trehalose, hypotaurine, taurine and blood serum on survival of frozen bull sperm. Cryobiology 30:423–431

    Article  CAS  PubMed  Google Scholar 

  56. Funahashi H, Sano T (2005) Selected antioxidants improve the function of extended boar semen stored at 10°C. Theriogenology 63:1605–1616

    Article  CAS  PubMed  Google Scholar 

  57. Atessahin A, Bucak MN, Tuncer PB et al (2008) Effects of antioxidant additives on microscopic and oxidative parameters of Angara goat semen following the freeze-thawing process. Small Rumin Res 77:38–44

    Article  Google Scholar 

  58. Martins-Bersa A, Rocha A, Mayenco-Aguirre A (2009) Effects of taurine supplementation and ionophore concentrations on post-thaw acrosome reaction of dog spermatozoa. Theriogenelogy 71:248–253

    Article  Google Scholar 

  59. Kim JG, Parthasarathy S (1998) Oxidation and spermatozoa. Semen Reprod Endocrinol 16:235–239

    Article  CAS  Google Scholar 

  60. Bansal AK, Bilaspuri GS (2008) Effect of manganese on bovine sperm motility, viability, and lipid peroxidation in vitro. Anim Reprod CBRA 5:90–96

    Google Scholar 

  61. Kumar H, Mahmood S (2001) The use of fast acting antioxidants for the reduction of cow placental retention and subsequent endometritis. Ind J Anim Sci 71:650–653

    CAS  Google Scholar 

  62. Bansal AK, Bilaspuri GS (2009) Antioxidant effect of vitamin E on motility, viability and lipid peroxidation in cattle spermatozoa under oxidative stress. Anim Sci Paper Rep 27:5–14

    CAS  Google Scholar 

  63. Bilaspuri GS, Bansal AK (2008) Mn2+ A potent antioxidant and stimulator of sperm capacitation and acrosome reaction in crossbred cattle bulls. Arch Anim Breed 51:149–158

    CAS  Google Scholar 

  64. Bansal AK, Bilaspuri GS (2008) Oxidative stress alters membrane sulfhydryl status, lipid and phospholipid contents of crossbred cattle bull spermatozoa. Anim Reprod Sci 104:398–404

    Article  CAS  PubMed  Google Scholar 

  65. Du Plessis SS, Makker K, Desai NR et al (2008) Impact of oxidative stress on IVF. Expert Rev Obstet Gynecol 3:539–554

    Article  Google Scholar 

  66. Goncalves FS, Barretto LSS, Arruda RP et al (2010) Effect of antioxidants during bovine in vitro fertilization procedures on spermatozoa and embryo development. Reprod Domest Anim 45:129–135

    Article  CAS  PubMed  Google Scholar 

  67. De Lamirande E, Gagnon C (1995) Impact of reactive oxygen species on spermatozoa: a balancing act between beneficial and detrimental effects. Hum Reprod 10(l):15–21

    Article  CAS  PubMed  Google Scholar 

  68. Saleman JJ, Kufra FS, Matt A et al (2005) Role of glutathione in reproductive tract secretions on mouse pre-implantation embryo development. Biol Reprod 73:308–314

    Article  Google Scholar 

  69. Li TK (1975) The glutathione and thiol content of mammalian spermatozoa and seminal plasma. Biol Reprod 12:641–646

    Article  CAS  PubMed  Google Scholar 

  70. Luberda Z (2005) The role of glutathione in mammalian gametes. Reprod Biol 5:5–17

    PubMed  Google Scholar 

  71. Nivsarkar M, Cherian B, Patel S (1998) A regulatory role of sulfhydryl groups in modulation of sperm membrane conformation by heavy metals: Sulfhydryl groups as markers for infertility assessment. Biochem Biophys Res Commun 247:716–718

    Article  CAS  PubMed  Google Scholar 

  72. Horton HR, Moran LH, Ochs RS et al (2002) Principles of biochemistry, 3rd edn. Prentice Hall, Upper Saddle River, pp 221–222

    Google Scholar 

  73. Verma A, Kanwar KC (1999) Effect of vitamin E on human sperm motility and lipid peroxidation in vitro. Asian J Androl 1:151–154

    CAS  PubMed  Google Scholar 

  74. Sinclair S (2000) Male infertility: nutritional and environmental consideration. Altern Med Rev 5:28–38

    CAS  PubMed  Google Scholar 

  75. Donnelly ET, McClure N, Lewis SEM (1999) Antioxidant supplementation in vitro does not improve human sperm motility. Fertil Steril 72:484–495

    Article  CAS  PubMed  Google Scholar 

  76. Anand RK, Kanwar U (2001) Role of same trace metal ions in placental membrane lipid peroxidation. Biol Trace Elem Res 82:61–75

    Article  CAS  PubMed  Google Scholar 

  77. Tampo Y, Yonaha M (1992) Antioxidant mechanism of Mn (II) in phospholipids peroxidation. Free Radic Biol Med 13:115–120

    Article  CAS  PubMed  Google Scholar 

  78. Shukla GS, Chandra VC (1981) Manganese toxicity: lipid peroxidation in rat brain. Acta Pharmacol Toxicol 48:95–100

    Article  CAS  Google Scholar 

  79. Bansal (2006) Effects of antioxidants on crossbred cattle bull spermatozoa under oxidative stress. Ph.D. thesis, Punjab Agricultural University, Ludhiana

    Google Scholar 

  80. O’Flaherty C, Beorlegui NB, Beconi MT (1999) Reactive oxygen species requirements for bovine sperm capacitation and acrosome reaction. Theriogenology 52:289–301

    Article  PubMed  Google Scholar 

  81. O’Flaherty C, de Lamirande E, Gagnon C (2005) Reactive oxygen species and protein kinases modulate the level of phosphor-MEK like proteins during human sperm capacitation. Biol Reprod 73:94–105

    Article  PubMed  Google Scholar 

  82. de Lamirande E, Jiang H, Zini A et al (1997) Reactive oxygen species and sperm physiology. Rev Reprod 2:48–54

    Article  PubMed  Google Scholar 

  83. Visconti PE, Kopf GS (1998) Regulation of protein-phosphorylation during sperm capacitation. Biol Reprod 59:1–6

    Article  CAS  PubMed  Google Scholar 

  84. Lapointe S, Ahmad I, Buhr MM et al (1996) Modulation of post-thaw motility, survival, calcium uptake and fertility of bovine sperm by magnesium and manganese. J Dairy Sci 79:2163–2169

    Article  CAS  PubMed  Google Scholar 

  85. Garbers DL, Kopf GS (1980) The regulation of spermatozoa by calcium and cyclic nucleotides. In: Greengard P, Roinson GA (eds) Advances in cyclic nucleotides research. Raven, New York, pp 251–305

    Google Scholar 

  86. Tash JS, Means AR (1983) Cyclic adenosine 3′-5′ monophosphate, calcium and protein phosphorylation in flagellar motility. Biol Reprod 28:75–104

    Article  CAS  PubMed  Google Scholar 

  87. Lindemann CB, Gotz JS (1988) Calcium regulation of flagellar curvature and swimming pattern in triton X-100 extracted rat sperm. Cell Motil Cytoskeleton 10:420–431

    Article  CAS  PubMed  Google Scholar 

  88. Lindemann CB, Kanous KS, Gardner TK (1991) The interrelationship of calcium and cAMP mediated effects on reactivated mammalian sperm models in comparative spermatology: 20 years after edited by Bacetti B. Ed. Raven, New York, p 491

    Google Scholar 

  89. Guraya SS (1999) Cellular and molecular biology of capacitation and acrosome reaction in spermatozoa. Int Rev Cytol 199:1–66

    Article  Google Scholar 

  90. Larsen CJ (1994) The BCL2 gene is a prototype of a gene family that controls programmed cell death (apoptosis). Ann Genet 37:121–134

    CAS  PubMed  Google Scholar 

  91. Sidhu KS, Sundhey R, Guraya SS (1984) Stimulation of capacitation and the acrosome reaction in ejaculated buffalo (Bubalus bubalis) sperm and the effect of a sperm motility factor. Int J Androl 7:324–333

    Article  CAS  PubMed  Google Scholar 

  92. Bansal AK (2013) Manganese: a potent antioxidant in semen. Iran J Appl Anim Sci 3:217–221

    CAS  Google Scholar 

  93. Tarin JJ, Brines J, Cono A (1998) Is antioxidant therapy a promising strategy to improve human reproduction? Antioxidant may protect against infertility. Hum Reprod 13:1415–1424

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amrit Kaur Bansal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Bansal, A.K. (2015). Antioxidants and Other Potent Strategies to Reduce Oxidative Stress in Semen. In: Rani, V., Yadav, U. (eds) Free Radicals in Human Health and Disease. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2035-0_24

Download citation

Publish with us

Policies and ethics