Skip to main content

Plant-Microbial Interaction: A Dialogue Between Two Dynamic Bioentities

  • Chapter
  • First Online:
Agricultural Bioinformatics

Abstract

Since the time of evolution, the earth’s plant floral community remained associated with ubiquitous population of microbes by a wide array of interactive relationships, ranging from symbiotic to parasitic. The ecology of plant-microbial association has influenced the plant’s diversity, metabolism, morphology, productivity, physiology, defence system and tolerance against adversities. Similarly, the microbial population has also been affected in terms of morphology, diversity, community composition, etc. In plant-microbial association, microbes obtain shelter, protection and nutrients from the plants either positively or negatively without affecting the plant’s health. In symbiotic plant-microbial interaction, plants provide habitat, nutrients and protection against the adverse environment, while in return, the microbes render several benefits such as protection against pathogens, plant growth promotions, resistance towards abiotic stress, improved nutrient uptake and fitness. The microbial endophytes and epiphytes are generally regarded as plant symbionts. The antagonistic association between these two living systems, in which the plant antagonist kills the microbial pathogens by producing toxic phytochemicals or the microbial parasite adversely affects the plant’s fitness by withdrawing essential plant nutrients for their own survival and altering the physiology of the host plant. How do the plants cross talk to the microbes to establish the associations? Various response-related signals drive such cross talks. The omics (genomics, proteomics and metabolomics) approach is being used to unveil the role of complex cryptic signalling process in the plant and microbe interaction. In this chapter, the existing understandings about the plant-microbial interactions and the roles of signalling mechanisms in such interactions have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrews JH, Harris RF (2000) The ecology and biogeography microorganisms on plant surfaces. Annu Rev Phytopathol 38:145–180

    Article  PubMed  Google Scholar 

  • Arevalo-Ferro C, Reil G, Gorg A, Eberl L, Riedel K (2005) Biofilm formation of Pseudomonas putida IsoF: the role of quorum sensing as assessed by proteomics. Syst Appl Microbiol 28:87–114

    Article  CAS  PubMed  Google Scholar 

  • Bacilio-Jiménez M, Aguilar-Flores S, Ventura-Zapata E, Pérez-Campos E, Bouquelet S, Zenteno E (2003) Chemical characterization of root exudates from rice (Oryza sativa) and their effects on the chemotactic response of endophytic bacteria. Plant Soil 249:271–277

    Article  Google Scholar 

  • Bacon CW, White JF (2000) Microbial endophytes. Marcel Dekker, New York

    Google Scholar 

  • Badri DV, Loyola-Vargas VM, Broeckling CD, De-la-Peña C, Jasinski M, Santelia D, Martinoia E, Sumner LW, Banta LM, Stermitz F, Vivanco JM (2008a) Altered profile of secondary metabolites in the root exudates of Arabidopsis ATP-binding cassette transporter mutants. Plant Physiol 146:762–771

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Badri DV, Loyola-Vargas VM, Du J, Stermitz FR, Broeckling CD, Iglesias-Andreu L, Vivanco JM (2008b) Transcriptome analysis of Arabidopsis roots treated with signalling compounds: a focus on signal transduction, metabolic regulation and secretion. New Phytol 179:209–223

    Article  CAS  PubMed  Google Scholar 

  • Bailey MJ, Rainey PB, Zhang XX, Lilley AK (2002) Population dynamics, gene transfer and gene expression in plasmids: the role of the horizontal gene pool in local adaptation at the plant surface. In: Lindow SE, Hecht-Poinar EI, Elliot VJ (eds) Phyllosphere microbiology. APS Press, St. Paul, pp 173–192

    Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  CAS  PubMed  Google Scholar 

  • Beattie GA, Lindow SE (1995) The secret life of foliar bacterial pathogens on leaves. Annu Rev Phytopathol 33:145–172

    Article  CAS  PubMed  Google Scholar 

  • Bever JD, Platt TG, Morton ER (2012) Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annu Rev Microbiol 66:265–283

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Braeken K, Daniels R, Ndayizeye M, Vanderleyden J, Michiels J (2008) Chapter 11 Quorum sensing in bacteria-plant interactions. In: Nautiyal CS, Dion P (eds) Molecular mechanisms of plant 265 and microbe coexistence, vol 15, Soil biology. Springer, Berlin/Heidelberg

    Google Scholar 

  • Brandl MT, Lindow SE (1998) Contribution of indole-3-acetic acid production to the epiphytic fitness of Erwinia herbicola. Appl Environ Microbiol 64:3256–3263

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chancey ST, Wood DW, Pierson LS III (1999) Two-component transcriptional regulation of N acyl-homoserine lactone production in Pseudomonas aureofaciens. Appl Environ Microbiol 65:2294–2299

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choi O, Kim J, Kim JG, Jeong Y, Moon JS, Park CS, Hwang I (2008) Pyrroloquinoline quinone is a plant growth promotion factor produced by Pseudomonas fluorescens B16. Plant Physiol 146(2):657–668

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Compant S, Duffy B, Nowak J, Cl C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    Article  CAS  PubMed  Google Scholar 

  • de Weert S, Vermeiren H, Mulders IH, Kuiper I, Hendrickx N, Bloemberg GV, Vanderleyden J, De Mot R, Lugtenberg BJ (2002) Flagella-driven chemotaxis towards exudates components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant Microbe Interact 15:1173–1180

    Article  PubMed  Google Scholar 

  • De-la-Peña C, Lei Z, Watson BS, Sumner LW, Vivanco JM (2008) Root-microbe communication through protein secretion. J Biol Chem 283:25247–25255

    Article  PubMed  Google Scholar 

  • Ercolani GL (1991) Distribution of epiphytic bacteria on olive leaves and the influence of leaf age and sampling time. Microb Ecol 21:35–48

    Article  CAS  PubMed  Google Scholar 

  • Finlay RD (2008) Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J Exp Bot 59:1115–1126

    Article  CAS  PubMed  Google Scholar 

  • Fokkema NJ, Schippers B (1986) Phyllosphere vs rhizosphere as environments for saprophytic colonization. In: Fokkema NJ, Van den Heuvel J (eds) Microbiology of the phyllosphere. Cambridge University Press, London, pp 137–159

    Google Scholar 

  • Fry SC (1989) Cellulases, hemicelluloses and auxin-stimulated growth: a possible relationship. Physiol Plant 75:532–536

    Article  CAS  Google Scholar 

  • Fuqua C, Parsek MR, Greenberg EP (2001) Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35:439–468

    Article  CAS  PubMed  Google Scholar 

  • Gangwar M, Kaur G (2009) Isolation and characterization of endophytic bacteria from endorhizosphere of sugarcane and ryegrass. Internet J Microbiol 7. doi:10.5580/181d

  • Germaine K, Liu X, Cabellos G, Hogan J, Ryan D, Dowling DN (2006) Bacterial endophyte-enhanced phyto-remediation of the organochlorine herbicide 2,4-dichlorophenoxyacetic acid. FEMS Microbiol Ecol 57:302–310

    Article  CAS  PubMed  Google Scholar 

  • Guo BH, Wang YC, Zhou XW, Hu K, Tan F, Miao ZQ, Tang KX (2006) An endophytic taxol-producing fungus BT2 isolated from Taxus chinensis var. mairei. Afr J Biotechnol 5:875–877

    CAS  Google Scholar 

  • Garcia-Brugger A, Lamotte O, Vandelle E, Bourque S, Lecourieux D, Poinssot B, Wendehenne D, Pugin A (2006) Early signaling events induced by elicitors of plant defenses. Mol Plant Microbe Interact 19(7):711–24, Review

    Google Scholar 

  • Hassanein WA, Awny NM, El-Mougith AA, Salah El-Dien SH (2009) The antagonistic activities of some metabolites produced by Pseudomonas aeruginosa Sha8. J Appl Sci Res 5:404–414

    CAS  Google Scholar 

  • He SY (1998) Type III protein secretion systems in plant and animal pathogenic bacteria. Annu Rev Phytopathol 36:363–392

    Article  CAS  PubMed  Google Scholar 

  • Hirano SS, Upper CD (1989) Diel variation in population size and ice nucleation activity of Pseudomonas syringae on snap bean leaflets. Appl Environ Microbiol 55:623–630

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hirano SS, Upper CD (2000) Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae—a pathogen, ice nucleus, and epiphyte. Microbiol Mol Biol Rev 64:624–653

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hirano SS, Ostertag EM, Savage SA, Baker LS, Willis DK, Upper DC (1997) Contribution of the regulatory gene lemA to field fitness of Pseudomonas syringae pv. syringae. Appl Environ Microbiol 63:4304–4312

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hirano SS, Charkowski AO, Collmer A, Willis DK, Upper CD (1999) Role of the Hrp type III protein secretion system in growth of Pseudomonas syringae pv. syringae B728a on host plants in the field. Proc Natl Acad Sci U S A 96:9851–9856

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hutchison ML, Johnstone K (1993) Evidence for the involvement the surface active properties of the extracellular toxin tolaasin in the manifestation of brown blotch disease symptoms by Pseudomonas tolaasii on Agaricus bisporus. Physiol Mol Plant Pathol 42:373–384

    Article  CAS  Google Scholar 

  • Hutchison ML, Tester MA, Gross DC (1995) Role of biosurfactant and ion channel-forming activities of syringomycin in transmembrane ion flux: a model for the mechanism of action in the plant-pathogen interaction. Mol Plant Microbe Interact 8:610–620

    Article  CAS  PubMed  Google Scholar 

  • Jacques MA, Kinkel LL, Morris CE (1995) Population sizes, immigration, and growth of epiphytic bacteria on leaves of different ages and positions of field-grown endive (Cichorium endivia var. latifolia). Appl Environ Microbiol 61:899–906

    CAS  PubMed Central  PubMed  Google Scholar 

  • Joseph B, Patra RR, Lawrence R (2007) Characterization of plant growth promoting Rhizobacteria associated with chickpea (Cicer arietinum L). Int J Plant Prod 1:141–152

    Google Scholar 

  • Kawaguchi M, Minamisawa K (2010) Plant-microbe communications for symbiosis. Plant Cell Physiol 51:1377–1380

    Article  CAS  PubMed  Google Scholar 

  • Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96:473–480

    Article  CAS  PubMed  Google Scholar 

  • Kiraly Z, El-Zahaby HM, Klement Z (1997) Role of extracellular polysaccharide (EPS) slime in plant pathogenic bacteria in protecting cells to reactive oxygen species. J Phytopathol 145:59–68

    Article  CAS  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Legard DE, McQuilken MP, Whipps JM, Fenlon JS, Fermor TR, Thompson IP, Bailey MJ, Lynch JM (1994) Studies of seasonal changes in the microbial populations on the phyllosphere of spring wheat as a prelude to the release of genetically modified microorganisms. Agric Ecosyst Environ 50:87–101

    Article  Google Scholar 

  • Li J, Beatty PK, Shah S, Jensen SE (2007) Use of PCR-targeted mutagenesis to disrupt production of Fusaricidin-type antifungal antibiotics in Paenibacillus polymyxa. Appl Environ Microbiol 73:3480–3489

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Licciardello G, Bertani I, Steindler L, Bella P, Venturi V, Catara V (2007) Pseudomonas corrugate contains a conserved N-acyl homoserine lactone quorum sensing system; its role in tomato pathogenicity and tobacco hypersensitivity response. FEMS Microbiol Ecol 61:222–234

    Article  CAS  PubMed  Google Scholar 

  • Lilley AK, Bailey MJ (1997) The acquisition of indigenous plasmids by a genetically marked pseudomonad population colonizing the sugar beet phytosphere is related to local environment conditions. Appl Environ Microbiol 63:1577–1583

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lindow SE (1985) Integrated control and role of antibiosis in biological control of fire blight and frost injury. In: Windels C, Lindow SE (eds) Biological control on the phylloplane. APS Press, St. Paul, pp 83–115

    Google Scholar 

  • Lindow SE (1987) Competitive exclusion of epiphytic bacteria by Ice Pseudomonas syringae mutants. Appl Environ Microbiol 53:2520–2527

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lindow SE (1995) Control of epiphytic ice nucleation-active bacteria for management of plant frost injury. In: Lee RE, Warren GJ, Gusta LV (eds) Biological ice nucleation and its applications. APS Press, St. Paul, pp 239–256

    Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lindow SE, McGourty G, Elkins R (1996) Interactions of antibiotics with Pseudomonas fluorescens strain A506 in the control of fire blight and frost injury to pear. Phytopathology 86:841–848

    Article  CAS  Google Scholar 

  • Loyola-Vargas VM, Broeckling CD, Badri D, Vivanco JM (2007) Effect of transporters on the secretion of phytochemicals by the roots of Arabidopsis thaliana. Planta 225:301–310

    Article  CAS  PubMed  Google Scholar 

  • Mandal SM, Dey S (2008) LC-MALDI-TOF MS-based rapid identification of phenolic acids. J Biomol Tech 19(2):116–121

    PubMed Central  PubMed  Google Scholar 

  • Mandal SM, Chakraborty D, Dey S (2010) Phenolic acids act as signalling molecules in plant -microbe symbioses. Plant Signal Behav 5:359–368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mauch F, Mauch-Mani B, Boller T (1988) Antifungal hydrolases in pea tissue. II. Inhibition of fungal growth by combinations of chitinase and/3-1,3-glucanase. Plant Physiol 88:936–942

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mercier J, Lindow SE (2001) Field performance of antagonistic bacteria identified in a novel laboratory assay for biological control of fire blight of pear. Biol Control 22:66–71

    Article  Google Scholar 

  • Miller CM, Miller RV, Garton-Kenny D, Redgrave B, Sears J, Condron MM, Teplow DB, Strobel GA (1998) Ecomycins, unique antimycotics from Pseudomonas viridiflava. J Appl Microbiol 84:937–944

    Article  CAS  PubMed  Google Scholar 

  • Montesinos E (2003) Plant-associated microorganisms: a view from the scope of microbiology. Int Microbiol 6:221–223

    Article  CAS  PubMed  Google Scholar 

  • Morgan JA, Bending GD, White PJ (2005) Biological costs and benefits to plant-microbe interactions in the rhizosphere. J Exp Bot 56:1729–1739

    Article  CAS  PubMed  Google Scholar 

  • Narasimhan K, Basheer C, Bajic VB, Swarup S (2003) Enhancement of plant- microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls. Plant Physiol 32:146–153

    Article  Google Scholar 

  • Narula N, Deubel A, Gans W, Behl RK, Merbach W (2006) Paranodules and colonization of wheat roots by phytohormone producing bacteria in soil. Plant Soil Environ 52:119–129

    CAS  Google Scholar 

  • Orhan E, Esitken A, Ercisli S, Turan M, Sahin F (2006) Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Sci Hortic 111:38–43

    Article  CAS  Google Scholar 

  • Pathak KV, Keharia H, Gupta K, Thakur SS, Balaram P (2012) Lipopeptides from the banyan endophyte, Bacillus subtilis K1: mass spectrometric characterization of a library of fengycins. J Am Soc Mass Spectrom 23:1716–1728

    Article  CAS  PubMed  Google Scholar 

  • Pillay VK, Nowak J (1997) Inoculum density, temperature, and genotype effects on in vitro growth promotion and epiphytic and endophytic colonization of tomato (Lycopersicon esculentum L.) seedlings inoculated with a pseudomonad bacterium. Can J Microbiol 43:354–361

    Article  CAS  Google Scholar 

  • Piper KR, von Bodman SB, Farrand SK (1993) Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction. Nature 362:448–450

    Article  CAS  PubMed  Google Scholar 

  • Pusey PL (2002) Biological control agents for fire blight of apple compared under conditions limiting natural dispersal. Plant Dis 86:639–644

    Article  Google Scholar 

  • Radulović NS, Blagojević PD, Stojanović-Radić ZZ, Stojanović NM (2013) Antimicrobial plant metabolites: structural diversity and mechanism of action. Curr Med Chem 20:932–952

    PubMed  Google Scholar 

  • Redecker D, Morton JB, Bruns TD (2000) Ancestral lineages of arbuscular mycorrhizal fungi (Glomales). Mol Phylogenet Evol 14(2):276–284

    Article  CAS  PubMed  Google Scholar 

  • Rangarajan S, Loganathan P, Saleena LM, Nair S (2001) Diversity of pseudomonads isolated from three different plant rhizospheres. J Appl Microbiol 91:742–749

    Article  CAS  PubMed  Google Scholar 

  • Reichling J (2010) Plant-microbe interactions and secondary metabolites with antibacterial, antifungal and antiviral properties. In: Wink M (ed) Annual plant reviews volume 39: functions and biotechnology of plant secondary metabolites, 2nd edn. Wiley-Blackwell, Oxford

    Google Scholar 

  • Reinhold B, Hurek T, Fendrik I (1985) Strain-specific chemotaxis of Azospirillum spp. J Bacteriol 162:190–195

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reiter B, Bürgmann H, Burg K, Sessitsch A (2003) Endophytic nifH gene diversity in African sweet potato. Can J Microbiol 49:549–555

    Article  CAS  PubMed  Google Scholar 

  • Rivas R, Peix A, Mateos PF, Trujillo ME, Martinez-Molina E, Velazqueze E (2006) Biodiversity of populations of phosphate solubilizing rhizobia that nodulates chickpea in different Spanish soils. Plant Soil 287:23–33

    Article  CAS  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19:827–837

    Article  CAS  PubMed  Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Article  CAS  PubMed  Google Scholar 

  • Ryu R, Patten CL (2008) Aromatic amino acid-dependent expression of indole-3-pyruvate decarboxylase is regulated by 4 TyrR in Enterobacter cloacae UW5. Am Soc Microbiol 190:1–35

    Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 2011:1–30

    Google Scholar 

  • Shulaev V, Cortes D, Miller G, Mittler R (2008) Metabolomics for plant stress response. Physiol Plant 132:199–208

    Article  CAS  PubMed  Google Scholar 

  • Smeekens S, Rook F (1997) Sugar sensing and sugar-mediated signal transduction in plants. Plant Physiol 115:7–13

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, Amsterdam/London

    Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signaling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240

    Article  CAS  PubMed  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signalling. FEMS Microbiol Rev 31:425–448

    Article  CAS  PubMed  Google Scholar 

  • Sridevi M, Mallaiah KV (2008) Production of hydroxamate-type of siderophore by Rhizobium strains from Sesbania sesban (L). Int J Soil Sci 3:28–34

    Article  Google Scholar 

  • Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268

    Article  CAS  PubMed  Google Scholar 

  • Sturz AV, Christie BR, Matheson BG, Nowak J (1997) Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol Fertil Soils 25:13–19

    Article  Google Scholar 

  • Sugiyama A, Shitan N, Sato S, Nakamura Y, Tabata S, Yazaki K (2006) Genome-wide analysis of ATP-binding cassette (ABC) proteins in a model legume plant, Lotus japonicus: comparison with Arabidopsis ABC protein family. DNA Res 13:205–228

    Article  CAS  PubMed  Google Scholar 

  • Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, van der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improved phyto-remediation of toluene. Appl Environ Microbiol 71:8500–8505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van Aken B, Peres C, Doty S, Yoon J, Schnoor J (2004) Methylobacterium populi sp. nov., a novel aerobic, pink-pigmented, facultatively methylotrophic, methane-utilising bacterium isolated from poplar trees (Populus deltoides x nigra DN34). Evol Microbiol 54:1191–1196

    Article  Google Scholar 

  • van der Heijden MG, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Wani MC, Taylor HL, Wall ME, Coggon P, Mcphail AT (1971) Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93:2325–2327

    Article  CAS  PubMed  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    Article  CAS  PubMed  Google Scholar 

  • Welbaum G, Sturz AV, Dong Z, Nowak J (2004) Fertilizing soil microorganisms to improve productivity of agroecosystems. Crit Rev Plant Sci 23:175–193

    Article  CAS  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  PubMed  Google Scholar 

  • Wilson M, Lindow SE (1994) Coexistence among epiphytic bacterial populations mediated through nutritional resource partitioning. Appl Environ Microbiol 60:4468–4477

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wood DW, Gong F, Daykin MM, Williams P, Pierson LS III (1997) N-Acyl-homoserine lactone mediated regulation of phenazine gene expression by Pseudomonas aureofaciens 30–84 in the wheat rhizosphere. J Bacteriol 179:7663–7670

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu CH, Bernard SM, Andersen GL, Chen W (2009) Developing microbe-plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation and carbon sequestration. Microb Biotechnol 2:428–440

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Z, Pierson LS III (2001) A second quorum-sensing system regulates cell surface properties but not phenazine antibiotic production in Pseudomonas aureofaciens. Appl Environ Microbiol 67:4305–4315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khyatiben V. Pathak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Pathak, K.V., Nallapeta, S. (2014). Plant-Microbial Interaction: A Dialogue Between Two Dynamic Bioentities. In: P.B., K., Bandopadhyay, R., Suravajhala, P. (eds) Agricultural Bioinformatics. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1880-7_15

Download citation

Publish with us

Policies and ethics