Skip to main content

Selection of Biomonitoring Species

  • Chapter
  • First Online:
Lichens to Biomonitor the Environment

Abstract

Lichens lack significant cuticle or epidermis and are devoid of a well-developed root system, therefore they absorb nutrients directly from the atmosphere. Along with nutrients, pollutants are also absorbed and/or adsorbed on the lichen thalli without having any visible signs of injury to the thallus. Lichens show differential sensitivity towards wide range of pollutants. Certain species are inherently more sensitive, while some species shows tolerance to high levels of pollutants. These characteristics make certain lichen species suitable for being utilised as an indicator species (based on their sensitivity and tolerance). These features of lichens, combined with their extraordinary capability to grow in a large geographical area, rank them among an ideal and reliable bioindicators of air pollution. Periodically monitoring lichen community and physiological changes in the lichen species may be effectively utilised to monitor air quality of an area. This chapter summarises the criteria for selection of biomonitoring species and how characters of host plant influences lichen diversity. Details about different lichen species utilised for biomonitoring have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahamadjian V, Hale ME (eds) (1973) The lichens. Academic Press, London

    Google Scholar 

  • Arb CV, Mueller C, Ammann K, Brunold C (1990) Lichen Physiology and air pollution II. Statistical analysis of the correlation between SO2, NO2, NO and O3 and chlorophyll content, net photosynthesis, sulphate uptake and protein synthesis of Parmelia sulcata Taylor. New Phytol 115:431–437

    Article  Google Scholar 

  • Augusto S, Máguas C, Matos J, Pereira MJ, Soares A, Branquinho C (2009) Spatial modeling of PAHs in lichens for fingerprinting of multisource atmospheric pollution. Environ Sci Technol 43:7762–7769

    Article  CAS  Google Scholar 

  • Bačkor M, Loppi S (2009) Interactions of lichens with heavy metals. Biol Plant 53(2):214–222

    Article  Google Scholar 

  • Bačkor M, Fahselt D, Wu CT (2004) Free proline content is positively correlated with copper tolerance of the lichen photobiont Trebouxia erici (Chlorophyta). Plant Sci 167:151–157

    Article  Google Scholar 

  • Banásová V, Horák O, Čiamporová M, Nadubinská M, Lichtscheidl I (2006) The vegetation of metalliferous and nonmetalliferous grasslands in two former mine regions in Central Slovakia. Biologia 61:433–439

    Article  Google Scholar 

  • Bargagli R (1998) Trace elements in terrestrial plants, an ecophysiological approach to biomonitoring and biorecovery. Springer, Berlin/Heidelberg, 324 pp

    Google Scholar 

  • Bari A, Rosso A, Minciardi MR, Troiani F, Piervittori R (2001) Analysis of heavy metals in atmospheric particulates in relation to their bioaccumulation in explanted Pseudevernia furfuracea thalli. Environ Monit Assess 69:205–220

    Article  CAS  Google Scholar 

  • Barkman JJ (1958) Phytosociology and ecology of cryptogamic epiphytes. Van Gorcum, Assen

    Google Scholar 

  • Belinchón R, Martínez I, Otálora MAG, Aragón G, Dimas J, Escudero A (2009) Fragment quality and matrix affect epiphytic performance in a Mediterranean forest landscape. Am J Bot 96:1974–1982

    Article  Google Scholar 

  • Bennett JP (2000) Statistical baseline values for chemical elements in the lichen Hypogymnia physodes. In: Agrawal SB, Agrawal M (eds) Environmental pollution and plant responses. Lewis Publishers, Boca Raton, pp 343–353

    Google Scholar 

  • Bergamaschi L, Rizzio E, Giaveri G, Loppi S, Gallorini M (2007) Comparison between the accumulation capacity of four lichen species transplanted to a urban site. Environ Pollut 148:468–476

    Article  CAS  Google Scholar 

  • Bergamini A, Scheidegger C, Carvalho P, Davey S, Dietrich M, Dubs F, Farkas E, Groner U, Kärkkäinen K, Keller C, Lökös L, Lommi S, Máguas C, Mitchell R, Rico VJ, Aragón G, Truscott AM, Wolseley PA, Watt A (2005) Performance of macrolichens and lichen genera as indicators of lichen species richness and composition. Conserv Biol 19:1051–1062

    Google Scholar 

  • Bialoska D, Dayan FE (2005) Chemistry of the lichen Hypogymnia physodes transplanted to an industrial region. J Chem Ecol 31(12):2975–2991. doi:10.1007/s10886-005-8408-x

    Article  Google Scholar 

  • Blasco M, Domeño C, Lŏpez P, Nerín C (2011) Behaviour of different lichen species as biomonitors of air pollution by PAHs in natural ecosystems. J Environ Monit 13:2588–2596

    Article  CAS  Google Scholar 

  • Brodo IM (1973) Substrate ecology. In: Ahamadjian V, Hale ME (eds) The lichens. Academic Press, London

    Google Scholar 

  • Cislaghi C, Nimis PL (1997) Lichens, air pollution and lung cancer. Nature 387:463–464

    Article  CAS  Google Scholar 

  • Conti ME, Cecchetti G (2001) Biological monitoring: lichens as Bioindicator of air pollution assessment – a review. Environ Pollut 114:471–492

    Article  CAS  Google Scholar 

  • Farmer AM, Bates JW, Bell JNB (1991) Seasonal variations in acidic pollutant inputs and their effects on the chemistry of stemflow, bark and epiphyte tissues in three oak woodlands in N.W. Britain. New Phytol 118:441–451

    Article  CAS  Google Scholar 

  • Franklin JF, Forman RF (1987) Creating landscape patterns by forest cutting: ecological consequences and principles. Landsc Ecol 1:5–18

    Article  Google Scholar 

  • Fuertes E, Burgaz AR, Escudero A (1996) Preclimax epiphyte communities of bryophytes and lichens in Mediterranean forests from the Central Plateau (Spain). Vegetatio 123:139–151

    Article  Google Scholar 

  • Garty J (1993) Lichens as biomonitors for heavy metal pollution. In: Market B (ed) Plant as biomonitors. VCH Publication, Weinheim, pp 265–294

    Google Scholar 

  • Garty J (2001) Biomonitoring atmospheric heavy metals with lichens: theory and application. Crit Rev Plant Sci 20(4):309–371

    Article  CAS  Google Scholar 

  • Garty J, Tomer S, Levin T, Lehra H (2003) Lichens as biomonitors around a coal-fired power station in Israel. Environ Res 91:186–198

    Article  CAS  Google Scholar 

  • Godinho RM, Wolterbeek HT, Verburg T, Freitas MC (2008) Bioaccumulation behaviour of lichen Flavoparmelia caperata in relation to total deposition at a polluted location in Portugal. Environ Pollut 151:318–325

    Article  CAS  Google Scholar 

  • Gombert S, Asta J, Seaward MRD (2004) Assessment of lichen diversity by index of atmospheric purity (IAP), index of human impact (IHI) and other environmental factors in an urban area (Grenoble, southeast France). Sci Total Environ 324:83–199

    Article  Google Scholar 

  • Guidotti M, Stella D, Dominici C, Blasi G, Owczarek M, Vitali M, Protano C (2009) Monitoring of traffic-related pollution in a province of central Italy with transplanted lichen Pseudevernia furfuracea. Bull Environ Contam Toxicol 83:852–858

    Article  CAS  Google Scholar 

  • Harris GP (1971) The ecology of corticolous lichens. I. The zonation on oak and birch in south Devon. J Ecol 59:431–439

    Article  Google Scholar 

  • Hauck M, Runge M (2002) Stemflow chemistry and epiphytic lichen diversity in dieback-affected spruce forest of the Harz Mountains, Germany. Flora 197:250–261

    Article  Google Scholar 

  • Hauck M, Spribille T (2005) The significance of precipitation and substrate chemistry for epiphytic lichen diversity in spruce-fir forests of the Salish Mountains, northwestern Montana. Flora 200:547–562

    Article  Google Scholar 

  • Hauck M, Jung R, Runge M (2001) Relevance of element content of bark for the distribution of epiphytic lichens in a montane spruce forest affected by forest dieback. Environ Pollut 112:221–227

    Article  CAS  Google Scholar 

  • Hauck M, Hesse V, Runge M (2002) The significance of stemflow chemistry for epiphytic lichen diversity in a dieback-affected spruce forest on Mt. Brocken, northern Germany. Lichenologist 34:415–427

    Article  Google Scholar 

  • Hauck M, Dulamsuren C, Mühlenberg M (2007) Lichen diversity on steppe slopes in the northern Mongolian mountain taiga and its dependence on microclimate. Flora 202:530–546

    Article  Google Scholar 

  • Hawksworth DL, Rose F (1970) Qualitative scale for estimating sulphur dioxide air pollution in England and Wales using epiphytic lichens. Nature 227:145–148

    Article  CAS  Google Scholar 

  • Hazell P, Gustafsson L (1999) Retention of trees at final harvest – evaluation of a conservation technique using epiphytic bryophyte and lichen transplants. Biol Conserv 90:133–142

    Article  Google Scholar 

  • Hedenås H, Ericson L (2004) Aspen lichens in agricultural and forest landscapes: the importance of habitat quality. Ecography 27:521–531

    Article  Google Scholar 

  • Hedenås H, Hedström P (2007) Conservation of epiphytic lichens: significance of remnant aspen (Populus tremula) trees in clear-cuts. Biol Conserv 135:388–395

    Article  Google Scholar 

  • Herzig R, Libendörfer UM, Ammann K, Cuechheva M, Landolt W (1989) Passive biomonitoring with lichens as a part of integrated biological measuring system for monitoring air pollution in Switzerland. Int J Environ Anal Chem 35:43–57

    Article  CAS  Google Scholar 

  • Hyvärinen M, Soppela K, Halonen P, Kauppi M (1993) A review of fumigation experiments on lichens. Aquilo Serie Botanica 32:21–31

    Google Scholar 

  • Insarova ID, Insarov GE, Bråkenhielm S, Hultengren S, Martinsson PO, Semenov SM (1992) Lichen sensitivity and air pollution (Swedish Environmental Protection Agency report 4007). Environmental Impact Assessment Department, Uppsala

    Google Scholar 

  • Jeran Z, Byrne AR, Batic F (1995) Transplanted epiphytic lichens as biomonitors of air-contamination by natural radionuclides around the Zirovski vrh uranium mine, Slovenia. Lichenologist 27(5):375–385

    Google Scholar 

  • Jeran Z, Jacimovic R, Batic F, Mavsar R (2002) Lichens as integrating air pollution monitors. Environ Pollut 120:107–113

    Article  CAS  Google Scholar 

  • Kholia H, Mishra GK, Upreti DK, Tiwari L (2011) Distribution of lichens on fallen twigs of Quercus leucotrichophora and Quercus semecarpifolia in and around Nainital city, Uttarakhand, India. Geophytology 41(1–2):61–73

    Google Scholar 

  • Loppi S, de Dominicis V (1996) Effects of agriculture on epiphytic lichen vegetation in Central Italy. Israel. J Plant Sci 44:297–307

    Google Scholar 

  • Loppi S, Frati L (2006) Lichen diversity and lichen transplants as monitors of air pollution in a rural area of central Italy. Environ Monit Assess 114:361–375

    Article  CAS  Google Scholar 

  • Loppi S, Pirintsos SA (2003) Epiphytic lichens as sentinels for heavy metal pollution at forest ecosystems (central Italy). Environ Pollut 121:327–332

    Article  CAS  Google Scholar 

  • Loppi S, Pirintsos SA, Dominics V (1998) Soil contribution to the elemental composition of epiphytic lichens (Tuscany, Central Italy). Environ Monit Assess 58:121–131

    Article  CAS  Google Scholar 

  • Loppi S, Kotzabasis K, Loppi S (2004) Polyamine production in lichens under metal pollution stress. J Atmos Chem 49:303–315

    Article  Google Scholar 

  • Mikhailova IN (2007) Populations of epiphytic lichens under stress conditions: survival strategies. Lichenologist 39:83–89

    Article  Google Scholar 

  • Mikhailova IN, Sharunova IP (2008) Dynamics of heavy metal accumulation in thalli of the epiphytic lichen Hypogymnia physodes. Russ J Ecol 39:346–352

    Article  CAS  Google Scholar 

  • Mikhailova I, Trubina M, Vorobeichik E, Scheidegger C (2005) Influence of environmental factors on the local-scale distribution of cyanobacterial lichens: case study in the North Urals, Russia. Folia Cryptogam Estonica 41:45–54

    Google Scholar 

  • Minganti V, Capelli R, Dravai G, De Pellegrini R, Brunialti G, Giordani P, Modenesi P (2003) Biomonitoring of trace metals by different species of Lichens (Parmelia) in North-West Italy. J Atmos Chem 45:219–229

    Article  CAS  Google Scholar 

  • Mitrović T, Stamenković S, Cvetković V, Nikolić M, Bašosić R, Mutić J, Andelković A, Bojić A (2012) Epiphytic lichen Flavoparmelia caperata as a sentinel for trace metal pollution. J Serbian Chem Soc 77(9):1301–1310

    Article  Google Scholar 

  • Moen J, Jonsson BG (2003) Edge effects on Liverworts and lichens in forests patches in a mosaic of Boreal Forest and Wetland. Conserv Biol 17:380–388

    Article  Google Scholar 

  • Motiejûnaite J, Faútynowick W (2005) Effect of land use on lichen diversity in the transboundary region of Lithuania and north-eastern Poland. Ekologija 3:34–43

    Google Scholar 

  • Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol Evol 10:58–62

    Article  CAS  Google Scholar 

  • Nimis PL, Lazzarin A, Lazzarin G, Skert N (2000) Biomonitoring of trace elements with lichens in Veneto (NE Italy). Sci Total Environ 255:97–111

    Article  CAS  Google Scholar 

  • Nascimbene J, Marini L, Nimis PL (2007) Influence of forest management on epiphytic lichens in a temperate beech forest of northern Italy. For Ecol Manage 247:43–47

    Article  Google Scholar 

  • Nash TH (1989) Metal tolerance in lichens. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, pp 119–131

    Google Scholar 

  • Nash TH III (2008) Lichen biology, 2nd edn. Cambridge University Press, New York

    Book  Google Scholar 

  • Nash TH III, Gries C (2002) Lichens as bioindicators of sulfur dioxide. Symbiosis 33:1–21

    CAS  Google Scholar 

  • Nieboer E, Richardson DHS (1981) Lichens as monitors of atmospheric deposition. In: Eisenreich SJ (ed) Atmospheric inputs of pollutants to natural waters. An Arbor Science Publishing, Michigan, pp 339–388

    Google Scholar 

  • Nimis PL, Scheidegger C, Wolseley PA (eds) (2002) Monitoring with lichens – monitoring lichens, Nato Science Series IV: Earth and Environmental Sciences 7. Kluwer, Dordrecht

    Google Scholar 

  • Paoli L, Loppi S (2008) A biological method to monitor early effect of the air pollution. Environ Pollut 155:383–388. doi:10.1016/j.envpol.2007.11.004

    Article  CAS  Google Scholar 

  • Pinho P, Augusto S, Branquinho C, Bio A, Pereira MJ, Soares A, Catarino F (2004) Mapping lichen diversity as a first step for air quality assessment. J Atmos Chem 49:377–389

    Article  CAS  Google Scholar 

  • Purvis OW, Halls C (1996) A review of lichens in metal-enriched environments. Lichenologist 28:571–601

    Google Scholar 

  • Purvis OW, Dubbin W, Chimonides PDJ, Jones GC, Read H (2008) The multielement content of the lichen Parmelia sulcata, soil, and oak bark in relation to acidification and climate. Sci Total Environ 390:558–568

    Article  CAS  Google Scholar 

  • Renhorn KE, Esseen PA, Palmqvist K, Sundberg B (1997) Growth and vitality of epiphytic lichens.1. Responses to microclimate along a forest edge-interior gradient. Oecologia 109:1–9

    Article  Google Scholar 

  • Richardson DHS (1992) Pollution monitoring with lichens. Richmond, Slough

    Google Scholar 

  • Riga-Karandinos NA, Karandinos GM (1998) Assessment of air pollution from a lignite power plant in the plain of megalopolis (Greece) using as a biomonitors three species of lichens; impact on some biochemical parameters of lichens. Sci Total Environ 215:167–183

    Article  CAS  Google Scholar 

  • Rudolph ED (1963) Vegetation of Hallett station area, Victoria Land, Antarctica. Ecology 44:585–586

    Article  Google Scholar 

  • Rune O (1953) Plant life on serpentines and related rocks in the north of Sweden. Acta Phytogeogr Suec 31:1–139

    Google Scholar 

  • Seaward MRD (2008) Environmental role of lichens. In: Nash TH III (ed) Lichen biology, 2nd edn. Cambridge University Press, New York, pp 274–298

    Chapter  Google Scholar 

  • Seaward MRD, Coppins BJ (2004) Lichens and hypertrophication. In: Döbbeler P et al (eds). Bibliotheca Lichenologica 88:561–572

    Google Scholar 

  • Sheik MA, Raina AK, Upreti DK (2009) Lichen flora of Surinsar-Mansar wildlife sanctuary, J & K. J Appl Nat Sci 1(1):79–81

    Google Scholar 

  • Shukla V (2012) Physiological response and mechanism of metal tolerance in lichens of Garhwal Himalayas. Final technical report. Scientific and Engineering Research Council, Department of Science and Technology, New Delhi. Project No. SR/FT/LS-028/2008

    Google Scholar 

  • Shukla V, Upreti DK (2007) Physiological response of the lichen Phaeophyscia hispidula (Ach.) essl. To the urban environment of Pauri and Srinagar (Garhwal), Himalayas. Environ Pollut 150:295–299. doi:10.1016/j.envpol.2007.02.010

    Article  CAS  Google Scholar 

  • Shukla V, Patel DK, Upreti DK, Yunus M, Prasad S (2013) A comparison of heavy metals in lichen (Pyxine subcinerea), mango bark and soil. Int J Environ Sci Technol 10:37–46. doi:10.1007/s13762-012-0075-1

    Article  CAS  Google Scholar 

  • St. Clair LL (1989) Report concerning establishment of a lichen biomonitoring program and base line for the Jarbige Wilderness Area, Humboldt National Forest, Naveda. U.S. Forest Service technical report

    Google Scholar 

  • St. Clair BS, St. Clair LL, Mangelson FN, Weber JD (2002a) Influence of growth form on the accumulation of airborne copper by lichens. Atmos Environ 36:5637–5644

    Article  CAS  Google Scholar 

  • St. Clair BS, St. Clair LL, Weber JD, Mangelson FN, Eggett LD (2002b) Element accumulation patterns in foliose and fruticose lichens from rock and bark substrates in Arizona. Bryologist 105:415–421

    Article  CAS  Google Scholar 

  • Thormann MN (2006) Lichens as indicators of forest health in Canada. Forestry Chron 82(3):335–343

    Google Scholar 

  • van Herk CM, Aptroot A, van Dobbin HF (2002) Longterm monitoring in the Netherlands suggests that lichen respond to global warming. Lichenologist 34:141–154

    Article  Google Scholar 

  • Vestergaard N, Stephansen U, Rasmussen L, Pilegaard K (1986) Airborne heavy metal pollution in the environment of a Danish steel plant. Water Air Soil Pollut 27:363–377

    Article  CAS  Google Scholar 

  • Wolseley P, James P (2000) Factors affecting changes in species of Lobaria in sites across Britain 1986–1998. Forest Snow Landsc Res 75(3):319–338

    Google Scholar 

  • Wolseley P, James P, Sutton MA, Theobald MR (2003) Using lichen communities to assess changes in sites of known ammonia Concentrations (2003) In: Lichens in a changing pollution environment. workshop at Nettlecombe, Somerset, 24–27 February 2003 organised by the British Lichen Society and English Nature

    Google Scholar 

  • Wolterbeek B (2002) Biomonitoring of trace element air pollution: principles, possibilities and perspectives. Environ Pollut 120:11–21

    Article  CAS  Google Scholar 

  • Wolterbeek HT, Bode P (1995) Strategies in sampling and sample handling in the context of large-scale plant biomonitoring surveys of trace element air pollution. Sci Total Environ 176:33–43

    Article  CAS  Google Scholar 

  • Wolterbeek HT, Bode P, Verburg TG (1996) Assessing the quality of biomonitoring via signal-to-noise ratio analysis. Sci Total Environ 180:107–116

    Article  CAS  Google Scholar 

  • Wolterbeek HT, Garty J, Reis MA, Freitas MC (2003) Biomonitors in use: lichens and metal air pollution. In: Markert BA, Breure AM, Zechmeister HG (eds) Bioindicators and biomonitors. Elsevier, Oxford, pp 377–419

    Chapter  Google Scholar 

  • Yildiz A, Aksoy A, Tug GN, Islek C, Demirezen D (2008) Biomonitoring of heavy metals by Pseudevernia furfuracea (L.) Zopf in Ankara (Turkey). J Atmos Chem 60:71–81. doi:10.1007/s10874-008-9109-y

    Article  CAS  Google Scholar 

  • Zabludowska E, Kowalsa J, Jedynak L, Wajas S, Sklodowska A, Antosiewicz DM (2009) Search for a plant for phytoremediation-what can we learn from field and hydrophonic studies. Chemosphere 77:301–307

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Shukla, V., Upreti, D.K., Bajpai, R. (2014). Selection of Biomonitoring Species. In: Lichens to Biomonitor the Environment. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1503-5_3

Download citation

Publish with us

Policies and ethics