Skip to main content

Impact of Climate Change on Fruit and Vegetable Quality

  • Chapter
  • First Online:
Climate-Resilient Horticulture: Adaptation and Mitigation Strategies

Abstract

Nutritional quality of fruits and vegetables depends on genetic and environmental factors. Soil factors, temperature, light and CO2 are the major factors which determine the quality of horticulture produce. Most of the health-benefiting nutrients including vitamins, minerals and antioxidants are supplied through fruits and vegetables. However, the changed climate has affected the quality of many fruits and vegetables. Elevated CO2 has improved the vitamin C, sugars, acids and carotenoids in oranges, tomatoes and strawberries. Positive effect of CO2 was also observed on total antioxidant capacity, phenols and anthocyanins in fruits and oil palm. However, elevated CO2 may decrease the protein and mineral content of the produce. High-temperature stress is known to decrease vitamin C, starch, sugars and many antioxidants especially anthocyanins and volatile flavour compounds in fruits. Deficit irrigation increases sugars, anthocyanins and even volatiles in strawberries and tomatoes. However, severe stress decreases the quality of fruits and vegetables. A higher temperature coupled with water stress is going to definitely reduce the fruit and vegetable quality in terms of vitamins, antioxidants and minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aguado A, Frías J, García-Tejero I, Romero F, Muriel JL, Capote N (2010) Towards the improvement of fruit-quality parameters in citrus under 1 deficit irrigation strategies. Centro IFAPA ‘Las Torres-Tomejil’. Ctra. Sevilla-Cazalla Km. 12’2. 41200 5 Alcaládel Río (Sevilla)

    Google Scholar 

  • Barbale D (1970) The influence of the carbon dioxide on the yield and quality of cucumber and tomato in the covered areas. Augsneun Raza (Riga) 16:66–73

    CAS  Google Scholar 

  • Bikash Khanal (2012) Effect of day and night temperature on pollen characteristics, fruit quality and storability of tomato. Master thesis, Department of Plant and Environmental Science, Norwegian University of Life Sciences

    Google Scholar 

  • Bindi M, Fibbi L, Miglietta F (2001) Free Air CO2 Enrichment (FACE) of grapevine (Vitis vinifera L.): II. Growth and quality of grape and wine in response to elevated CO2 concentrations. Eur J Agro 14:145–155

    Article  Google Scholar 

  • Birhanu K, Tilahun K (2010) Fruit yield and quality of drip-irrigated tomato under deficit irrigation. Afr J Food Agric Nutr Dev 10(2):2131–2151

    Google Scholar 

  • Buendía A, Allende A, Nicolás E, Alarcón JJ, Gil MI (2008) Effect of regulated deficit irrigation and crop load on the antioxidant compounds of peaches. J Agric Food Chem 56:3601–3608

    Article  PubMed  Google Scholar 

  • Caldwell CR, Britz SJ, Mirecki RM (2005) Effect of temperature, elevated carbon dioxide and drought during seed development on the isoflavone content of dwarf soybean [Glycine max (L.) Merrill] grown in controlled environments. J Agric Food Chem 53:1125–1129

    Article  PubMed  CAS  Google Scholar 

  • Chartzoulakis K, Michelakis N, Stefanoudaki E (1999) Water use, growth, yield and fruit quality of ‘Bonanza’ oranges under different soil water regimes. Adv Hortic Sci 13(1):6–11

    Google Scholar 

  • Chen PM, Varga DM (1999) Ethylene from ‘Bartlett’ pears promotes early ripening od ‘d’Anjou’ pears when packed together in modified atmosphere bags. Hortic Technol 9(2):190–194

    CAS  Google Scholar 

  • Cohen SD, Tarara JM, Gambetta GA, Matthews MA, Kennedy JA (2012) Impact of diurnal temperature variation on grape berry development, proanthocyanidin accumulation and the expression of flavonoid pathway genes. J Exp Bot 63(7):2655–2665

    Google Scholar 

  • D’Amico ML, Izzo R, Tognoni F, Pardossi A, Navari F (2003) Application of diluted seawater to soilless culture of tomato (Lycopersicon esculentum Mill.): effect on plant growth, yield, and fruit quality and antioxidant capacity. J Food Agric Environ 1:112–116

    Google Scholar 

  • Dumas Y, Dadomo M, Lucca GD, Grolier P (2003) Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J Sci Food Agric 83:369–382

    Article  CAS  Google Scholar 

  • Fleisher DH, Logendra LS, Moraru C, Both A, Cavazzoni J, Gianfagna T, Lee T, Janes HW (2006) Effect of temperature perturbations on tomato (Lycopersicon esculentum Mill.) quality and production scheduling. J Hortic Sci Biotechnol 81(1):125–131

    Google Scholar 

  • Gautier H, Rocci A, Buret M, Grasselly D, Dumas Y, Causse M (2005) Effect of photo selective filters on the physical and chemical traits of vine-ripened tomato fruits. Can J Plant Sci 85(2):439–446

    Article  Google Scholar 

  • George B, Kaur CH, Khurdiya DS, Kapoor HC (2004) Antioxidants in tomato (Lycopersicon esculentum) as a function of genotype. Food Chem 84:45–51

    Article  CAS  Google Scholar 

  • Gil MI, Holcroft DM, Kader AA (1997) Changes in strawberry anthocyanins and other polyphenols in response to carbon dioxide treatments. J Agric Food Chem 45:1662–1667

    Article  CAS  Google Scholar 

  • Helyes L, Pék Z, Brandt S, Varga GY, Barna É, Hóvári J, Lugasi A (2003) Influence of harvest date on fruit technological traits of five processing tomato varieties. Acta Hortic 613:213–216

    Google Scholar 

  • Helyes L, Lugasi A, Pék Z (2007) Effect of natural light on surface temperature and lycopene content of vine ripened tomato fruit. Can J Plant Sci 87:927–929

    Article  Google Scholar 

  • Hsiao-Hua Pan, Zen-Hong Shu (2007) Temperature affects color and quality characteristics of ‘Pink’ wax Apple fruit discs. Sci hortic 112:290–296

    Google Scholar 

  • Ibrahim MH, Jaafar HZE (2011) Increased carbon dioxide concentration improves the antioxidative properties of the Malaysian Herb Kacip Fatimah (Labisia pumila Blume). Molecules 17(5):5195–5211

    Google Scholar 

  • Ibrahim MH, Jaafar HZE (2012) Impact of elevated carbon dioxide on primary, secondary metabolites and antioxidant responses of Eleais guineensis Jacq. (Oil Palm). Seedlings Mol 17(5):5195–5211

    CAS  Google Scholar 

  • Idso SB, Idso KE (2001) Effects of atmospheric CO2 enrichment on plant constituents related to animal and human health. Environ Exp Bot 45:179–199

    Article  PubMed  CAS  Google Scholar 

  • Idso SB, Kimball BA, Shaw PE, Widmer W, Vanderslice JT, Higgs DJ, Montanari A, Clark WD (2002) The effect of elevated atmospheric CO2 on the vitamin C concentration of (sour) orange juice. Agric Eco Environ 90:1–7

    Article  CAS  Google Scholar 

  • Islam MS, Matsui T, Yoshida Y (1996) Effect of carbon dioxide enrichment on physico-chemical and enzymatic changes in tomato fruits at various stages of maturity. Sci Hortic 65(2):137–149

    Article  CAS  Google Scholar 

  • IvánGarcía-Tejero, Víctor Hugo Durán-Zuazo, José Luis Muriel-Fernández (2011) Long-term impact of sustained-deficit irrigation on yield and fruit quality in sweet orange cv. Salustiana (SW Spain). Comu Sci 2(2):76

    Google Scholar 

  • Keutgen AJ, Pawelzik E (2009) Impacts of NaCl stress on plant growth and mineral nutrient assimilation in two cultivars of strawberry. Environ Exp Bot 65:170–176

    Article  CAS  Google Scholar 

  • Kimball BA, Mitchell ST (1981) Effects of CO2 enrichment, ventilation, and nutrient concentration on the flavor and vitamin C content of tomato fruit. Hortic Sci 16:665–666

    CAS  Google Scholar 

  • Kirnak H, Kaya C, Ismail TAS, Higgs D (2001) The influence of water deficit on vegetative growth, physiology, fruit yield and quality in eggplants. Bulg J Plant Physiol 27(3–4):34–46

    Google Scholar 

  • Kliewer WM (1971) Effect of day temperature and light intensity on concentration of malic and tartaric acids in Vitis vinifera L. grapes. J Am Soc Hortic Sci 96(3):372–377

    CAS  Google Scholar 

  • Kliewer WM (1973) Berry composition of Vitis vinifera cultivars as influenced by photo and nycto temperatures during maturation. J Am Soc Hortic Sci 98:153–159

    Google Scholar 

  • Koshita Y, Asakura T, Fukuda H, Tsuchida Y (2007) Night time temperature treatment of fruit clusters of ‘Aki Queen’ grapes during maturation and its effect on the skin color and abscisic acid content. Vitis 46(4):208–209

    CAS  Google Scholar 

  • Kurooka H, Fukunaga S, Yuda E, Nakagawa S, Horiuchi S (1990) Effect of carbon-dioxide enrichment on vine growth and berry quality of kyoho grapes. J Jpn Soc Hortic Sci 59(3):463–470

    Article  CAS  Google Scholar 

  • Leavitt SW, Idso SB, Kimball BA, Burns JM, Sinha A, Stott L (2003) The effect of long-term atmospheric CO2 enrichment on the intrinsic water-use efficiency of sour orange trees. Chemosphere 50:217–222

    Article  PubMed  CAS  Google Scholar 

  • Loladze I (2002) Rising atmospheric CO2 and human nutrition: toward globally imbalanced plant stoichiometry? Trends Ecol Evol 17:457–461

    Article  Google Scholar 

  • Madsen E (1971) The influence of CO2-concentration on the content of ascorbic acid in tomato leaves. Ugeskr Agron 116:592–594

    Google Scholar 

  • Madsen E (1975) Effect of CO2 environment on growth, development, fruit production and fruit quality of tomato from a physiological viewpoint. In: Chouard P, de Bilderling N (eds) Phytotronics in agricultural and horticultural research. Bordas, Paris, pp 318–330

    Google Scholar 

  • Materska M, Perucka I (2005) Antioxidant activity of the main phenolic compounds Isolated from Hot pepperfruit (Capsicum annuum L.). J Agric Food Chem 53:1750–1756

    Article  PubMed  CAS  Google Scholar 

  • McKeehen JD, Smart DJ, Mackowiak CL, Wheeler RM, Nielsen SS (1996) Effect of CO2 levels on nutrient content of lettuce and radish. Adv Space Res 18(4–5):85–92

    Article  PubMed  CAS  Google Scholar 

  • Merlene Ann Babu, Devesh Singh, Gothandam KM (2011) Effect of salt stress on expression of carotenoid pathway genes in tomato. J Stress Physiol Biochem 7(3):87–94

    Google Scholar 

  • Mitchell JP, Shennan C, Grattan SR, May DM (1991) Tomato fruit yields and quality underwater deficit and salinity. J Am Soc Hortic Sci 116(2):215–221

    CAS  Google Scholar 

  • Moretti CL, Mattos LM, Calbo AG, Sargent SA (2010) Climate changes and potential impacts on post-harvest quality of fruit and vegetable crops: a review. Food Res Inter 43:1824–1832

    Article  CAS  Google Scholar 

  • Mori K, Sugaya S, Gemma H (2005) Decreased anthocyanin biosynthesis in grape berries grown under elevated night temperature condition. Sci Hortic 105:319–330

    Google Scholar 

  • Mori K, Goto-Yamamoto N, Kitayama M, Hashizume K (2007) Loss of anthocyanins in red-wine grape under high temperature. J Exp Botany 58(8):1935–1945

    Google Scholar 

  • Navarro JM, Pérez-Pérez JG, Romero P, Botía P (2010) Analysis of the changes in quality in mandarin fruit, produced by deficit irrigation treatments. Food Chem 119:1591–1596

    Article  CAS  Google Scholar 

  • Neocleous D, Vasilakakis M (2007) Effect of NaCl stress on red raspberry (Rubus idaeus L. Autumn Bliss). Sci Hortic 112:282–289

    Article  CAS  Google Scholar 

  • Njoku PC, Ayuk AA, Okoye CV (2011) Temperature effects on vitamin C content in citrus fruits. Pak J Nutr 10(12):1168–1169

    Article  CAS  Google Scholar 

  • Padayatty SJ, Katz A, Wang Y, Eck P, Kwon O, Lee JH, Chen S, Corpe C, Dutta A, Dutta SK, Levine M (2003) Vitamin C as an antioxidant: evaluation of its role in disease prevention. J Am Coll Nutr 22(1):18–35

    PubMed  CAS  Google Scholar 

  • Pan J, Vicente AR, Martínez GA, Chaves AR, Civello PM (2004) Combined use of UV-C irradiation and heat treatment to improve postharvest life of strawberry fruit. J Sci Food Agric 84(14):1831–1838

    Article  CAS  Google Scholar 

  • Richardson AC, Marsh KB, Boldingh HL, Pickering AH, Bulley SM, Frearson NJ, Ferguson AR, Thornber SE, Bolitho KM, Macrae EA (2004) High growing temperatures reduce fruit carbohydrate and vitamin C in kiwifruit. Plant Cell Environ 27:423–435

    Article  CAS  Google Scholar 

  • Rivero RM, Ruiz JM, Garcı’a PC, Lo’pez-Lefebre LR, Sa’nchez E, Romero L (2001) Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci 160:315–321

    Article  PubMed  CAS  Google Scholar 

  • Roby G, Harbertson JF, Adams DA, Matthews M, Matthews M (2004) Berry size and vine water deficits as factors in wine grape composition: anthocyanins and tannins. Aust J Grape Wine Res 10:100–107

    Article  CAS  Google Scholar 

  • Romero P, Navarro JM, Pérez PJG, Garcia SF, Gomez GA, Porras I, Martinez V, Botia P (2006) Deficit irrigation and rootstock: their effects on water relations, vegetative development, yield, fruit quality and mineral nutrition of Clemenules mandarin. Tree Physiol 26(12):1537–1548

    Article  PubMed  CAS  Google Scholar 

  • Rosales MA, Ruiz JM, Hernández J, Soriano T, Castilla N, Romero L (2006) Antioxidant content and ascorbate metabolism in cherry tomato exocarp in relation to temperature and solar radiation. J Sci Food Agric 86:1545–1551

    Article  CAS  Google Scholar 

  • Schaffer B, Whiley AW, Searle C, Nissen RJ (1997) Leaf gas exchange, dry matter partitioning, and mineral element concentrations in mango as influenced by elevated atmospheric carbon dioxide and root restriction. J Am Soc Hortic Sci 122:849–855

    Google Scholar 

  • Sezen SM, Celikel G, Yazar A, Tekin S, Kapur B (2010) Effect of irrigation management on yield and quality of tomatoes grown in different soilless media in a glasshouse. Sci Res Essay 5(1):041–048

    Google Scholar 

  • Shivashankara KS, Acharya SN (2010) Bioavailability of dietary polyphenols and the cardiovascular diseases. Open Nutraceuticals J 3:227–241

    CAS  Google Scholar 

  • Sun P, Mantri N, Lou H, Hu Y, Sun D (2012) Effects of elevated CO2 and temperature on yield and fruit quality of strawberry (Fragaria  ×  ananassa Duch.) at two levels of nitrogen application. PLoS One 7(7):e41000

    Article  PubMed  CAS  Google Scholar 

  • Tajiri T (1985) Improvement of bean sprouts production by intermittent treatment with carbon dioxide. Nippon Shokuhin Kogyo Gakkai Shi 32(3):159–169

    Article  CAS  Google Scholar 

  • Tarara JM, Lee JM, Spayd SE, Scagel CF (2008) Berry temperature and solar radiation alter acylation, proportion, and concentration of anthocyanin in merlot grapes. Am J Enol Viti 59:235–247

    CAS  Google Scholar 

  • Tovar MJ, Romero MP, Girona J, Motilva MJ (2002) L-Phenylalanine ammonia lyase activity and concentration of phenolics in developing olive (Olea europaea L. cv. Arbequina) fruit grown under different irrigation regimes. J Sci Food Agric 82:892–898

    Article  CAS  Google Scholar 

  • Wang SY, Bunce JA (2004) Elevated carbon dioxide affects fruit flavor in field-grown strawberries (Fragaria  ×  ananassa Duch). J Sci Food Agric 84:1464–1468

    Article  CAS  Google Scholar 

  • Wang SY, Zheng W (2001) Effect of plant growth temperature on antioxidant capacity in strawberry. J Agric Food Chem 49(10):4977–4982

    Article  PubMed  CAS  Google Scholar 

  • Wang SY, Bunce JA, Maas JL (2003) Elevated carbon dioxide increases contents of antioxidant compounds in field-grown strawberries. J Agric Food Chem 51:4315–4320

    Article  PubMed  CAS  Google Scholar 

  • Webb AD (1981) Quality factors in California grapes. In: Teranishi R, Barrera-Benitez H (eds) Quality of selected fruits and vegetables of North America, vol 170, ACS symposium series. American Chemical Society, Washington, DC, pp 1–9

    Chapter  Google Scholar 

  • Woolf AB, Ferguson IB (2000) Postharvest responses to high fruit temperatures in the field. Postharvest Biol Technol 21:7–20

    Article  Google Scholar 

  • Zemni H, Souid I, Salem AB, Fathalli N, Mliki A, Ghorbel A, Hammami M, Hellali R (2005) Aromatic potential of grapevines cultivated in Northern and Southern Tunisia. Acta Hortic 689:87–94

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kodthalu Seetharamaiah Shivashankara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Shivashankara, K.S., Rao, N.K.S., Geetha, G.A. (2013). Impact of Climate Change on Fruit and Vegetable Quality. In: Singh, H., Rao, N., Shivashankar, K. (eds) Climate-Resilient Horticulture: Adaptation and Mitigation Strategies. Springer, India. https://doi.org/10.1007/978-81-322-0974-4_21

Download citation

Publish with us

Policies and ethics