Skip to main content

Impact of Climate Change on Postharvest Quality of Vegetables

  • Chapter
  • First Online:
Advances in Research on Vegetable Production Under a Changing Climate Vol. 2

Abstract

The postharvest value of vegetables depends on its quality at the time of harvest. This postharvest quality is attributed by synthesis of plant pigments such as chlorophylls, carotenoids, xanthophylls, bio active photochemical and complex carbohydrates. This process of pigments and carbohydrate synthesis occur through photosynthetic activity, which is intricately linked to the environmental/pre-harvest conditions (climate) during production and harvesting stage. There are several pre-harvest factors such as genetic and environmental which affect quality of vegetables. The climate at production stage is one of the major factors which affects the quantity and quality of produced vegetable. The changing climatic conditions such as elevated temperature, irregular rainfall pattern, elevated carbon dioxide concentration, irregular weather event, salinity, draught, biotic stress etc. directly and indirectly affects the vegetable quality by altering duration of maturation, respiration, transpiration, development of bio-chemical, flavour components and nutritional value etc. The alteration in postharvest quality due to changing climate may be both positive or negative. This chapter put light on the influence of climate change and its triggering factors on growing conditions, quality, harvest maturity and nutritional value of vegetables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abewoy D (2018) Review on impacts of climate change on vegetable production and its management practices. Adv Crop Sci Technol 6(1):10–30

    Article  Google Scholar 

  • Abou-Hussein SD (2012) Climate change and its impact on the productivity and quality of vegetable crops. J Appl Sci Res 8:4359–4383

    Google Scholar 

  • Ackerman F, Stanton E (2013) Climate impacts on agriculture: a challenge to complacency 13-04. Global Development and Environment Institute, Tufts University, Medford

    Google Scholar 

  • Adams RM, Rosenzweig C, Peart RM, Ritchie JT, McCarl BA, Glyer JD, Curry RB, Jones JW, Boote KJ, Allen JLH (1990) Global climate change and US agriculture. Nature 345:219–224

    Article  Google Scholar 

  • Ali S, Liu Y, Ishaq M, Shah T, Ilyas A, Din IU (2017) Climate change and its impact on the yield of major food crops: evidence from Pakistan. Foods 6:39

    Article  Google Scholar 

  • Ali S, Ejaz S, Anjum MA, Nawaz A, Ahmad S (2020) Impact of climate change on postharvest physiology of edible plant products. In: Plant ecophysiology and adaptation under climate change: mechanisms and perspectives I. Springer, Singapore, pp 87–115

    Google Scholar 

  • Allen MR, Shine KP, Fuglestvedt JS, Millar RJ, Cain M, Frame DJ, Macey AH (2018) A solution to the misrepresentations of CO2-equivalent emissions of short-lived climate pollutants under ambitious mitigation. Clim Atmos Sci 1(1):1–8

    Google Scholar 

  • Anderson M (2013) Climate change, floods and adaptation. Presented at the California Department of Food and Agriculture Climate Change Adaptation Consortium, Monterey

    Google Scholar 

  • Arora SK, Partap PS, Pandita ML, Jalal I (1987) Production problems and their possible remedies in vegetable crops. Indian Hort 32(2):2–8

    Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63(10):3523–3543

    Article  CAS  Google Scholar 

  • Azarmi R, Taleshmikail RD, Gikloo A (2010) Effects of salinity on morphological and physiological changes and yield of tomato in hydroponics system. J Food Agric Environ 8(2):573–576

    Google Scholar 

  • Bales RC (2013) Managing forests for snowpack storage and water yield. Presented at the California Department of Food and Agriculture Climate Change Adaptation Consortium, Monterey

    Google Scholar 

  • Ballmer T, Hebeisen T, Wüthrich R, Gut F (2012) Potential for drip irrigation in potato production under changing climatic conditions. Agrarforschung Schweiz 5:244–251

    Google Scholar 

  • Bartholomew DM, Bartley GE, Scolnik PA (1991) Abscisic-acid control of rbcS and cab transcript ion intomato leaves. Plant Physiol 96:291–296

    Article  CAS  Google Scholar 

  • Baslam M, Garmendia I, Goicoechea N (2012) Elevated CO2 mayimpair the beneficial effect of arbuscular mycorrhizal fungi on the mineral and phytochemical quality of lettuce. Ann Appl Biol 161:180–191

    Article  CAS  Google Scholar 

  • Baysal G, Tipirdamaz R, Ekmekci Y (2004) Effects of salinity on some physiological parameters in three cultivars of cucumber (Cucumis sativus). Progress in cucurbit genetics and breeding research. Proceedings of Cucurbitaceae. The 8th EUCARPIA Meeting on Cucurbit genetics and Breeding, Olomouc, Chech Republic

    Google Scholar 

  • Becker C, Klaring HP (2016) CO2 enrichment can produce high red leaf lettuce yield while increasing most flavonoid glycoside and some caffeic acid derivative concentrations. Food Chem 199:736–745

    Article  CAS  Google Scholar 

  • Beverly RB, Latimer JG, Smittle DA (1993) Preharvest physiological and cultural effects on postharvest quality. Academic, In Postharvest Handling, pp 73–98

    Google Scholar 

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9(7):1055–1066

    Article  CAS  Google Scholar 

  • Bhat MA, Ahsan H, Husain S (2017) Climate change and its impact on food quality. Int J Pure App Biosci 5(3):709–725

    Article  Google Scholar 

  • Bindi M, Fibbi L, Miglietta F (2001) Free air CO2 enrichment (FACE) of grapevine (Vitis vinifera L.): II. Growth and quality of grape and wine in response to elevated CO2 concentrations. Eur J Agron 14:145–155

    Article  Google Scholar 

  • Bisbis MB, Gruda N, Blanke M (2018) Potential impacts of climate change on vegetable production and product quality – a review. J Clean Prod 170:1602–1620

    Article  CAS  Google Scholar 

  • Bogale A, Nagle M, Latif S, Aguila M, Müller J (2016) Regulated deficit irrigation and partial root-zone drying irrigation impact bioactive compounds and antioxidant activity in two select tomato cultivars. Sci Hortic 213:115–124

    Article  CAS  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants, pp 1158–1203

    Google Scholar 

  • Charles F (2019) Current challenges of physical treatments to control quality and postharvest diseases of fresh fruits and vegetables. In IOP Conference Series: Earth and Environmental Science (Vol. 309, No. 1, p. 012003). IOP Publishing

    Google Scholar 

  • Chen F, Song Y, Li X, Chen J, Mo L, Zhang X, Lin Z, Zhang L (2019) Genome sequences of horticultural plants: past, present, and future. Hortic Res 6(1):1–23

    Article  Google Scholar 

  • Chourasia KN, Lal MK, Tiwari RK, Dev D, Kardile HB, Patil VU, Kumar A, Vanishree G Kumar, D Bhardwaj V and Meena J.K (2021) Salinity stress in potato: understanding physiological, biochemical and molecular responses. Life, 11(6), p.545

    Google Scholar 

  • Darré M, Vicente AR, Cisneros-Zevallos L, Artés-Hernández F (2022) Postharvest ultraviolet radiation in fruit and vegetables: applications and factors modulating its efficacy on bioactive compounds and microbial growth. Foods 11(5):653

    Article  Google Scholar 

  • Daymond AJ, Wheeler TR, Hadley P, Ellis RH, Morison JIL (1997) The growth, development and yield of onion (Allium cepa L.) in response to temperature and CO2. J Hort Sci 72:135–145

    Article  Google Scholar 

  • de Morais DL, Aroucha EMM, de Oliveira FDA, de Medeiros JF, de Paiva CA, Nascimento LV (2018) Impact of salinity on quality and post-harvest conservation of gherkin (Cucumis anguria L.). J Agric Sci 10(4)

    Google Scholar 

  • Deschenes O, Greenstone M (2012) The economic impacts of climate change: evidence from agricultural output and random fluctuations in weather: reply. Am Econ Rev 102:3761–3773

    Article  Google Scholar 

  • Dong J, Gruda N, Lam SK, Li X, Duan Z (2018) Effects of elevated CO2 on nutritional quality of vegetables: a review. Front Plant Sci 9:924

    Article  Google Scholar 

  • Dong J, Gruda N, Li X, Tang Y, Zhang P, Duan Z (2020) Sustainable vegetable production under changing climate: the impact of elevated CO2 on yield of vegetables and the interactions with environments-a review. J Clean Prod 253:119920

    Article  CAS  Google Scholar 

  • Elvira S, Sanz J, Gonzalez-Fernandez I, Bermejo-Bermejo V (2021, December) Ozone effects on the quality of Swiss Chard. Peri-urban crops a case study. In Biology and Life Sciences Forum (Vol. 11, No. 1, p 16). MDPI

    Google Scholar 

  • Epstein PR (2001) Climate change and emerging infectious diseases. Microb Infect 3:747–754

    Article  CAS  Google Scholar 

  • Esua OJ, Chin NL, Yusof YA, Sukor R (2019) Effects of simultaneous UV-C radiation and ultrasonic energy postharvest treatment on bioactive compounds and antioxidant activity of tomatoes during storage. Food Chem 270:113–122

    Article  CAS  Google Scholar 

  • FAO (2008) Food and agricultural organisation, climate change and food security: a framework document. http://www.fao.org/docrep/010/k2595e/k2595e00.html. Rome, Italy

  • Farag MI, Behera TK, Munshi AD, Bharadwaj C, Jat GS, Khanna M, Chinnusamy V (2019) Physiological analysis of drought tolerance of cucumber (Cucumis sativus) genotypes. Indian J Agric Sci 89(9):1445–1450

    CAS  Google Scholar 

  • Favati F, Lovelli S, Galgano F, Miccolis V, Di Tommaso T, Candido V (2009) Processing tomato quality as affected by irrigation scheduling. Sci Hortic Amsterdam 122:562–571

    Article  Google Scholar 

  • Felzer BS, Cronin T, Reilly JM, Melillo JM, Wang X (2007) Impacts of ozone on trees and crops. ComptesRendus Geosci 339(11–12):784–798

    CAS  Google Scholar 

  • Fortier E, Desjardins Y, Tremblay N, Belec C, Cote M (2010) Influence of irrigation and nitrogen fertilization on broccoli polyphenolics concentrations. Acta Hortic 856:55–62

    Article  CAS  Google Scholar 

  • Gimeno BS, Bermejo V, Reinert RA, Zheng Y, Barnes JD (1999) Adverse effects of ambient ozone on watermelon yield and physiology at a rural site in eastern Spain. New Phytol 144:245–260

    Article  CAS  Google Scholar 

  • Giri A, Armstrong B, Rajashekar CB (2016) Elevated carbon dioxide level suppresses nutritional quality of lettuce and spinach. Am J Plant Sci 7(1):246–258

    Article  CAS  Google Scholar 

  • Giuffrida F, Graziani G, Fogliano V, Scuderi D, Romano D. Leonardi C (2014) Effects of nutrient and NaCl salinity on growth, yield, quality and composition of pepper grown in soilless closed system. J Plant Nutr, 37(9):1455–1474

    Google Scholar 

  • Glowacz M, Rees D (2016) Exposure to ozone reduces postharvest quality loss in red and green chilli peppers. Food Chem 210:305–310

    Article  CAS  Google Scholar 

  • Glowacz M, Colgan R, Rees D (2015) Influence of continuous exposure to gaseous ozone on the quality of red bell peppers, cucumbers and zucchini. Postharvest Biol Technol 99:1–8

    Article  CAS  Google Scholar 

  • Gogo EO, Opiyo AM, Hassenberg K, Ulrichs C, Huyskens-Keil S (2017) Postharvest UV-C treatment for extending shelf life and improving nutritional quality of African indigenous leafy vegetables. Postharvest Biol Technol 129:107–117

    Article  CAS  Google Scholar 

  • Guhathakurta P, Rajeevan M (2008) Trends in the rainfall pattern over India. Int J Climatol 28(11):1453–1469

    Article  Google Scholar 

  • Gurgel MT, Oliveira FHT, Heyi HR, Fernandes PD, Uyeda CA (2010) Qualidadepos-colheita de variedades de melõesproduzidos sob estressesalino e doses de potássio. Rev Brasileira de CienciasAgrárias 5:398–405

    Article  Google Scholar 

  • Hansen J, Mki S, Russell G, Kharecha P (2013) Climate sensitivity, sea level, and atmospheric carbon dioxide. Phil Trans R Soc A 371:2012–2094

    Article  Google Scholar 

  • Hao N, Han D, Huang K, Du Y, Yang J, Zhang J, Wen C, Wu T (2020) Genome-based breeding approaches in major vegetable crops. Theor Appl Genet 133(5):1739–1752

    Article  Google Scholar 

  • Heagle AS, Miller JA, Pursley WA (2003) Atmospheric pollutants and tracegases growth and yield responses of potato to mixtures of carbon dioxide andozone. J Environ Qual 32:1603–1610

    Article  CAS  Google Scholar 

  • Hildebrand PD, Forney CF, Jun S, Lihua F, McRae KB (2008) Effect of a continuous low ozone exposure (50 nL L−1) on decay and quality of stored carrots. Posthar Biol Tech 49(3):397–402

    Article  CAS  Google Scholar 

  • Hodges RJ, Buzby JC, Bennett B (2011) Postharvest losses and waste in developed and less developed countries: opportunities to improve resource use. J Agric Sci 149:37–45

    Article  Google Scholar 

  • Högy P, Fangmeier A (2009) Atmospheric CO2 enrichment affects potatoes: 2. Tuber quality traits. Eur J Agron 30(2):85–94

    Article  Google Scholar 

  • Imaizumi T, Yamauchi M, Sekiya M, Shimonishi Y, Tanaka F (2018) Responses of phytonutrients and tissue condition in persimmon and cucumber to postharvest UV-C irradiation. Postharvest Biol Technol 145:33–40

    Article  CAS  Google Scholar 

  • IPCC (2014) Climate Change 2014: synthesis report. In: Core Writing Team, Pachauri RK, Meyer LA (eds) Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panelon Climate Change. IPCC, Geneva, pp 40–54

    Google Scholar 

  • Jin C, Du S, Wang Y, Condon J, Lin X, Zhang Y (2009) Carbon dioxide enrichment by composting in greenhouses and its effect on vegetable production. J Plant Nutr Soil Sci 172:418–424

    Article  CAS  Google Scholar 

  • Kalloo G, Benarjee MK, Tiwari RN (2001) Tomato. In: Thumbraj S, Singh N (eds) Vegetables tuber crops and spices. Directorate of Information and Publication in Agriculture, Indian Council of Agricultural Research, New Delhi, pp 10–28

    Google Scholar 

  • Khan MZ, Zaidi SS, Amin I, Mansoor S (2019) A CRISPR way for fast-forward crop domestication. Trends Plant Sci 24(4):293–296

    Article  CAS  Google Scholar 

  • Kimball BA, Mitchell ST (1981) Effects of CO2 enrichment, ventilation, and nutrient concentration on the flavor and vitamin content of tomato fruit. J Plant Nutr Soil Sci 172:418–424

    Google Scholar 

  • Kirk WW, Da Rocha AB, Hollosy SI, Hammerschmidt R, Wharton PS (2006) Effect of soil salinity on internal browning of potato tuber tissue in two soil types. Am J Potato Res 83(3):223–232

    Article  CAS  Google Scholar 

  • Kondinya A, Palash S, Pandit MK (2014) Impact of Climate Change on vegetable cultivation - a review. Int J Environ Agric Biotech 7(1):145-1 55

    Google Scholar 

  • Kumari S, Agrawal M, Tiwari S (2013) Impact of elevated CO2 and elevatedO3 on Beta vulgaris L.: pigments, metabolites, antioxidants, growth and yield. Environ Pollut 174:279–288

    Article  CAS  Google Scholar 

  • Leisner CP (2020) Climate change impacts on food security-focus on perennial cropping systems and nutritional value. Plant Sci 293:110412

    Article  CAS  Google Scholar 

  • Li F, Wang J, Chen Y, Zou Z, Wang X, Yue M (2007) Combined effects of enhanced ultraviolet-B radiation and doubled CO2 concentration on growth, fruit quality and yield of tomato in winter plastic greenhouse. Front Biol China 2:414–418

    Article  Google Scholar 

  • Li P, Zhang X, Hu H, Sun Y, Wang Y, Zhao Y (2013) High carbon dioxide and low oxygen storage effects on reactive oxygen species metabolism in Pleurotus eryngii. Postharvest Biol Technol 85:141–146

    Article  CAS  Google Scholar 

  • Lin Q, Lu Y, Zhang J, Liu W, Guan W, Wang Z (2017) Effects of high CO2 in-package treatment on flavor, quality and antioxidant activity of button mushroom (Agaricus bisporus) during post-harvest storage. Postharvest Biol Technol 123:112–118

    Article  CAS  Google Scholar 

  • Liu C, Zheng H, Sheng K, Liu W, Zheng L (2018) Effects of postharvest UV-C irradiation on phenolic acids, flavonoids, and key phenylpropanoid pathway genes in tomato fruit. Sci Hortic 241:107–114

    Article  CAS  Google Scholar 

  • Lokesha AN, Shivashankara KS, Laxman RH, Geetha GA, Shankar AG (2019) Effect of high temperature on fruit quality parameters of contrasting tomato genotypes. Int J Curr Microbiol Appl Sci 8:1019–1029

    Article  CAS  Google Scholar 

  • Loladze I (2014) Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition. elife 3:e02245

    Article  Google Scholar 

  • Lopez MAH, Ulery AL, Samani Z, Picchioni G, Flynn RP (2011) Response of chilli pepper (Capsicum annuum L.) to salt stress and organic and inorganic nitrogen, growth and yield. Trop Subtrop Agroecosyst 14:137–147

    Google Scholar 

  • Lu Y, Dong W, Alcazar J, Yang T, Luo Y, Wang Q, Chen P (2018) Effect of preharvest CaCl2 spray and postharvest UV-B radiation on storage quality of broccoli microgreens, a richer source of glucosinolates. J Food Compos Anal 67:55–62

    Article  CAS  Google Scholar 

  • Machado RMA, Serralheiro RP (2017) Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 3:30

    Article  Google Scholar 

  • Magan JJ, Gallardo M, Thompson RB, Lorenzo P (2008) Effects of salinity on fruit yield and quality of tomato grown in soil-less culture in greenhouses in Mediterranean climatic conditions. Agric Water Manag 95:1041–1055

    Article  Google Scholar 

  • Marín A, Rubio JS, Martinez V, Gil MI (2009) Antioxidant compounds in green and red peppers as affected by irrigation frequency, salinity and nutrient solution composition. J Sci Food Agric 89:1352–1359

    Article  Google Scholar 

  • McGrath JM, Lobell DB (2013) Reduction of transpiration and altered nutrient allocation contribute to nutrient decline of crops grown in elevated CO2 concentrations. Plant Cell Environ 36(3):697–705

    Article  CAS  Google Scholar 

  • Mditshwa A, Magwaza LS, Tesfay SZ, Mbili NC (2017) Effect of ultraviolet irradiation on postharvest quality and composition of tomatoes: a review. J Food Sci Technol 54(10):3025–3035

    Article  CAS  Google Scholar 

  • Medeiros de PRF, Duarte SN, Dias CTS, Silva MFD (2010) Tolerância do pepino a salinidadeemambienteprotegido: Efeitossobrepropriedadesfísico-químicas dos frutos. (Cucumber salinity tolerance under protected environment: effect on the fruits physicochemical properties). Irrigation 15:301–311

    Google Scholar 

  • Medek DE, Schwartz J, Myers SS (2017) Estimated effects of future atmospheric CO2 concentrations on protein intake and the risk of protein deficiency by country and region. Environ Health Persp 125(8):087002

    Article  Google Scholar 

  • Medellin-Azuara J, Howitt RE, Duncan J, MacEwan Lund JR (2011) Economic impacts of climate related changes to California agriculture. Clim Chang 109:387–405

    Article  Google Scholar 

  • Moretti CL, Mattos LM, Calbo AG, Sargent SA (2010) Climate changes and potential impacts on postharvest quality of fruit and vegetable crops: a review. Food Res Int 43(7):1824–1832

    Article  CAS  Google Scholar 

  • Nahar K, Ullah SM, Islam N (2011) Osmoticadjustment and quality response of five tomato cultivars (Lycopersicon esculentum Mill.) following water deficit stress under subtropical climate. Asian J Plant Sci 10:153–157

    Article  Google Scholar 

  • Naradisorn M (2021) Effect of ultraviolet irradiation on postharvest quality and composition of foods. In: Food losses, sustainable postharvest and food technologies. Academic, pp 255–279

    Chapter  Google Scholar 

  • Narayanan N, Beyene G, Chauhan RD, Gaitán-Solís E, Gehan J, Butts P, Siritunga D, Okwuonu I, Woll A, Jiménez-Aguilar DM, Boy E (2019) Biofortification of field-grown cassava by engineering expression of an iron transporter and ferritin. Nat Biotechnol 37(2):144–151

    Article  CAS  Google Scholar 

  • NASA Global Climate Change: vital sign of the planet (2021). https://climate.nasa.gov/vital-signs/carbon-dioxide. Washington, DC, United States

  • Nemeskéri E, Helyes L (2019) Physiological responses of selected vegetable crop species to water stress. Agronomy 9(8):447

    Article  Google Scholar 

  • Nopsa JFH, Sharma ST, Ann GK (2014) Climate change and plant disease. In: van Alfen N (ed) Encyl Agri Food Sys, pp 232–243

    Google Scholar 

  • Oh MM, Carey EE, Rajashekar CB (2010) Regulated water deficits improve phytochemical concentration in lettuce. J Am Soc Hortic Sci 135:223–229

    Article  Google Scholar 

  • Paim BT, Crizel RL, Tatiane SJ, Rodrigues VR, Rombaldi CV, Galli V (2020) Mild drought stress has potential to improve lettuce yield and quality. Sci Hortic 272:109578

    Article  CAS  Google Scholar 

  • Panja P, Adhikary KVS (2018) Abiotic stresses and its Management for Quality Production of vegetables. In: Research trends in horticulture sciences, vol 1. Akinik Publications, New Delhi, pp 37–56

    Chapter  Google Scholar 

  • Pannga IB, Hanan J, Chakraborty S (2013) Climate change impacts on plant canopy architecture: implications for pest and pathogen management. Eur J Plant Path 135:596–610

    Google Scholar 

  • Park MH, Kim JG (2015) Low-dose UV-C irradiation reduces the microbial population and preserves antioxidant levels in peeled garlic (Allium sativum L.) during storage. Postharvest Biol Technol 100:109–112

    Article  CAS  Google Scholar 

  • Patel PK, Singh AK, Tripathi N, Yadav D, Hemantaranjan A (2014) Flooding: abiotic constraint limiting vegetable productivity. Adv Plant Agric Res 1:96–103

    Google Scholar 

  • Peirce LC (1987) Vegetables: characteristics, production and marketing. Wiley, New York

    Google Scholar 

  • Pena R, Hughes J (2007) Improving vegetable productivity in a variable and changing climate. SAT e J 4(1):1–22

    Google Scholar 

  • Pérez- Lopez U, Sgherri C, Miranda-Apodaca J, Micaelli F, Lacuesta M, Mena-Petite A (2018) Concentration of phenolic compounds is increased in lettuce grown under high light intensity and elevated CO2. Plant Physiol Biochem 123:233–241

    Article  Google Scholar 

  • Picton S, Grierson D (1988) Inhibition of expression of tomato-ripening genes at high temperature. Plant Cell Environ 11:265–272

    Article  CAS  Google Scholar 

  • Piikki K, Vorne V, Ojanperä K, Pleijel H (2003) Potato tuber surgars, starch andorganic acids in relation to ozone exposure. Potato Res 46(2):67–79

    Article  Google Scholar 

  • Prasad K, Jacob S, Siddiqui MW (2017) Fruit maturity, harvesting and quality standards. In book: springer- Preharvest modulation of postharvest fruit and vegetable quality. Elsevier Publications. Apple Academic Press, pp 41–69. https://doi.org/10.1016/B978-0-12-809807-3.00002-0

    Book  Google Scholar 

  • Prasad K, Guarav A, Preethi P, Neha P (2018) Edible coating technology for extending market life of horticultural produce. Acta Sci Agric 2:55–64

    Google Scholar 

  • Prasad K, Siddiqui, MW, Sharma RR, Gaurav AK, Neha P and Kumar N (2018a) Edible coatings and their effect on postharvest fruit quality. n.d.Springer- Postharvest Biology and Technology Book Series. Apple Acedmic Press,. pp. 201–264

    Google Scholar 

  • Putland D, Deuter P (2011) The effects of high temperatures on vegetable production and the rapid assessment of climate risk in agriculture. APEC Workshop on Collaboration on the Promotion of Indigenous Vegetables for Coping with Climate Change and Food Security. Asia-Pacific Economic Cooperation

    Google Scholar 

  • Sachadyn-Król M, Materska M, Chilczuk B, Karaś M, Jakubczyk A, Perucka I, Jackowska I (2016) Ozone-induced changes in the content of bioactive compounds and enzyme activity during storage of pepper fruits. Food Chem 211:59–67

    Article  Google Scholar 

  • Shaw MR, Zavaleta ES, Chiariello NR, Cleland EE, Mooney HA, Field CB (2002) Grassland responses to global environmental changes suppressed by elevated CO2. Science 298:1987–1990

    Article  CAS  Google Scholar 

  • Silva RS, Kumar L, Shabani F, Picanço MC (2017) Assessing the impact of global warming on worldwide open field tomato cultivation through CSIRO-Mk3·0 global climate model. J Agric Sci 155(3):407–420

    Article  Google Scholar 

  • Sivakumar R, Srividhya S (2016) Impact of drought on flowering, yield and quality parameters in diverse genotypes of tomato (Solanum lycopersicumL.). Adv Hortic Sci 30(1):3–11

    Google Scholar 

  • Skog LJ, Chu CL (2001) Effect of ozone on qualities of fruits and vegetables in cold storage. Can J Plant Sci 81:773–778

    Article  CAS  Google Scholar 

  • Smith MR, Myers SS (2018) Impact of anthropogenic CO2 emissions on global human nutrition. Nat Clim Chang 8(9):834–839

    Article  CAS  Google Scholar 

  • Solankey SS, Shirin A, Pallavi N, Meenakshi K (2017) Effect of high temperature stress on morpho-biochemical traits of tomato genotypes under polyhouse condition. Indian. J Ecol 44(Special Issue-5):497–502

    Google Scholar 

  • Solankey SS, Kumari M, Kumar M, Silvana N (2021) The role of research for vegetable production under a changing climate future trends and goals. In: Solankey SS et al (eds) Advances in research on vegetable production under a Changing Climate, vol 1. Springer, Cham., ISBN 978-3-030-63497-1, pp 1–12

    Chapter  Google Scholar 

  • Souza LPD, Faroni LRDA, Heleno FF, Cecon PR, Gonçalves TD, da Silva GJ, Prates LHF (2018) Effects of ozone treatment on postharvest carrot quality. LWT 90:53–60

    Article  Google Scholar 

  • Stathers T, Lamboll R, Mvumi BM (2013) Postharvest agriculture in changing climates: its importance to African smallholder farmers. Food Secur 5(3):361–392

    Article  Google Scholar 

  • Tkemaladze GS, Makhashvili KA (2016) Climate changes and photosynthesis. Ann Agrar Sci 14(2):119–126

    Article  Google Scholar 

  • Toivonen PM, Hodges DM (2011) Abiotic stress in harvested fruits and vegetables. Abiotic stress in plants-mechanisms and adaptations. InTech, China, pp 39–58

    Google Scholar 

  • Tzortzakisa N, Borlanda A, Singletona I, Barnes J (2007) Impact of atmospheric ozone-enrichment on quality-related attributes of tomato fruit. Postharvest Biol Technol 45(3):317–325

    Article  Google Scholar 

  • Van Gogh JB, Aramyan LH, Van der Sluis AA, Soethoudt JM, Scheer FP (2013) Feasibility of a network of excellence postharvest food losses: combining knowledge and competences to reduce food losses in developing and emerging economies. Wageningen UR-Food & Biobased Research, Wageningen

    Google Scholar 

  • Vandegeer R, Miller RE, Bain M, Gleadow RM, Cavagnaro TR (2013) Drought adversely affects tuber development and nutritional quality of the staple crop cassava (Manihot esculenta Crantz). Funct Plant Biol 40:195–200

    Article  Google Scholar 

  • Vorne V, Ojanperä K, De Temmerman L, Bindi M, Hogy P, Jones M (2002) Effects of elevated carbon dioxide and ozone on potato tuber quality in the European multiple-site experiment ‘CHIP-project’. Eur J Agron 17(4):369–381

    Article  CAS  Google Scholar 

  • Weston LA, Barth MM (1997) Preharvest factors affecting postharvest quality of vegetables. HortScience 32(5):812–816

    Article  Google Scholar 

  • Wheeler TR, Craufurd PQ, Ellis RH, Porter JR, Prasad PV (2000) Temperature variability and the yield of annual crops. Agric Ecosyst Environ 82:159–167

    Article  Google Scholar 

  • Wien HC (1997) The physiology of vegetable crops. Cab International, Oxon/NewYork

    Google Scholar 

  • Zhang Z, Liu L, Zhang M, Zhang Y, Wang Q (2014) Effect ofcarbon dioxide enrichment on health-promoting compounds and organoleptic properties of tomato fruits grown in greenhouse. Food Chem 153:157–163

    Article  CAS  Google Scholar 

  • Zhang L, Gao J, Hu H, Li P (2015) The activity and molecular characterization of a serine proteinase in Pleurotus eryngii during high carbon dioxide and low oxygen storage. Postharvest Biol Technol 105:1–7

    Article  CAS  Google Scholar 

  • Zhang P, Senge M, Dai Y (2016) Effects of salinity stress on growth, yield, fruit quality and water use efficiency of tomato under hydroponics system. Rev Agric Sci 4:46–55

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prasad, K. et al. (2023). Impact of Climate Change on Postharvest Quality of Vegetables. In: Solankey, S.S., Kumari, M. (eds) Advances in Research on Vegetable Production Under a Changing Climate Vol. 2. Advances in Olericulture. Springer, Cham. https://doi.org/10.1007/978-3-031-20840-9_16

Download citation

Publish with us

Policies and ethics