Skip to main content

On the Matter of Mind: Neural Complexity and Functional Dynamics of the Human Brain

  • Chapter
  • First Online:
Evolution of the Brain, Cognition, and Emotion in Vertebrates

Part of the book series: Brain Science ((BRASC))

  • 1871 Accesses

Abstract

The evolutionary expansion of the brain is among the most distinctive morphological features of anthropoid primates. During the past decades, considerable progress has been made in explaining brain evolution in terms of physical and adaptive principles. The object of this review is to present current perspectives on primate brain evolution, especially in humans, and to examine some of the design principles and operational modes that underlie the information processing capacity of the cerebral cortex. It is shown that the development of the cortex coordinates folding with connectivity in a way that produces smaller and faster brains than otherwise would have been possible. It will be argued that in primates the complexity of the neural circuitry of the cerebral cortex is the neural correlate of higher cognitive functions, including mind-like properties and consciousness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aboitiz F, Montiel JF (2012) From tetrapods to primates: conserved developmental mechanisms in diverging ecological adaptations. Prog Brain Res 195:3–24

    Article  PubMed  Google Scholar 

  • Aboitiz F, Lopez J, Montiel J (2003) Long distance communication in the human brain: timing constraints for inter-hemispheric synchrony and the origin of brain lateralization. Biol Res 36:89–99

    Article  PubMed  Google Scholar 

  • Adolphs R (2009) The social brain: neural basis of social knowledge. Annu Rev Psychol 60:693–716

    Article  PubMed  PubMed Central  Google Scholar 

  • Allen JS (2009) The lives of the brain: human evolution and the organ of mind. Belknap, Cambridge

    Book  Google Scholar 

  • Atkinson AP, Thomas MSC, Cleeremans A (2000) Consciousness: mapping the theoretical landscape. Trends Cogn Sci 4:372–382

    Article  CAS  PubMed  Google Scholar 

  • Azevedo FAC, Carvalho LRB, Grinberg LT, Farfel JM, Ferretti REI, Leite REP, Filho WJ, Lent R, Herculano-Houzel S (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513:532–541

    Article  PubMed  Google Scholar 

  • Baars BJ (2005) Global workspace theory of consciousness: toward a cognitive neuroscience of human experience. Prog Brain Res 150:45–53

    Article  PubMed  Google Scholar 

  • Barton RA, Venditti C (2014) Rapid evolution of the cerebellum in humans and other great apes. Curr Biol 24:2440–2444

    Article  CAS  PubMed  Google Scholar 

  • Berwick RC, Friederici AD, Chomsky N, Bolhuis JJ (2013) Evolution, brain, and the nature of language. Trends Cogn Sci 17:89–98

    Article  PubMed  Google Scholar 

  • Bolhuis JJ, Tattersall I, Chomsky N, Berwick RC (2014) How could language have evolved. PLoS Biol 12:e1001934. doi:10.1371/journal.pbio.1001934

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bosman CA, Aboitiz F (2015) Functional constraints in the evolution of brain circuits. Front Neurosci 9:303. doi:10.3389/fnins

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouchard D (2013) The nature and origin of language. Oxford University Press, Oxford

    Book  Google Scholar 

  • Bouchard TJ (2014) Genes, evolution and intelligence. Behav Genet 44:549–577

    Article  PubMed  Google Scholar 

  • Budd J, Kisvárday ZF (2013) How do you wire a brain? Front Neuroanat 7:14. doi:10.3389/fnana.2013.00014

    Article  PubMed  PubMed Central  Google Scholar 

  • Buxhoeveden DP (2012) Minicolumn size and human cortex. Prog Brain Res 195:219–235

    Article  PubMed  Google Scholar 

  • Buzsáki G, Logothetis N, Singer W (2013) Scaling brain size, keeping time: evolutionary preservation of brain rhythms. Neuron 80:751–764

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Changizi MA (2001) Principles underlying mammalian neocortical scaling. Biol Cybern 84:207–215

    Article  CAS  PubMed  Google Scholar 

  • Changizi MA (2007) Scaling the brain and its connections. In: Kaas JH (ed) Evolution of nervous systems, vol 3. Academic, New York, pp 167–180

    Chapter  Google Scholar 

  • Charvet CJ, Finlay BL (2014) Evo-devo and the primate isocortex: the central organizing role of intrinsic gradients of neurogenesis. Brain Behav Evol 84:81–92

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheung AF, Pollen AA, Tavare A, DeProto J, Molnár Z (2007) Comparative aspects of cortical neurogenesis in vertebrates. J Anat 211:164–176

    Article  PubMed  PubMed Central  Google Scholar 

  • Chomsky N (2007) Of minds and language. Biolinguistics 1:9–27

    Google Scholar 

  • Chittka L, Rossiter SJ, Skorupski P, Fernando C (2012) What is comparable in comparative cognition? Philos Trans R Soc Lond B 367:2677–2685

    Article  Google Scholar 

  • Christiansen MH, Chater N (2008) Language as shaped by the brain. Behav Brain Sci 31:489–508; discussion 509–558

    Google Scholar 

  • Christiansen MH, Chater N (2015) The now-or-never bottleneck: a fundamental constraint on language. Behav Brain Sci 14:1–52

    Google Scholar 

  • Churchland PS, Churchland PM (2002) Neural worlds and real worlds. Nat Rev Neurosci 3:903–907

    Article  CAS  PubMed  Google Scholar 

  • Clark DA, Mitra PP, Wang SS-H (2001) Scalable architecture in mammalian brains. Nature 411:189–192

    Article  CAS  PubMed  Google Scholar 

  • Corballis MC (2015) What’s left in language? Beyond the classical model. Ann NY Acad Sci 1359:14–29. doi:10.1111/nyas.12761

    Article  PubMed  Google Scholar 

  • Crick F, Koch C (1990) Towards a neurobiological theory of consciousness. Semin Neurosci 2:263–275

    Google Scholar 

  • Crick F, Koch C (1998) Consciousness and neuroscience. Cereb Cortex 8:97–107

    Article  CAS  PubMed  Google Scholar 

  • Crick F, Koch C (2003) A framework of consciousness. Nat Neurosci 6:119–126

    Article  CAS  PubMed  Google Scholar 

  • Da Costa NM, Martin KAC (2010) Whose cortical column would that be? Front Neuroanat 4:16. doi:10.3389/fnana.2010.00016

    PubMed  PubMed Central  Google Scholar 

  • De Reus MA, Saenger VM, Kahn RS, Van den Heuvel MP (2014) An edge-centric perspective on the human connectome: link communities in the brain. Philos Trans R Soc Lond B 369:20130527. doi:10.1098/rstb.2013.0527

    Article  Google Scholar 

  • Deacon TW (1990) Rethinking mammalian brain evolution. Am Zool 30:629–705

    Article  Google Scholar 

  • Deacon TW (1998) The symbolic species: the co-evolution of language and the brain. Norton and Company, New York

    Google Scholar 

  • Deacon TW (2006) Evolution of language systems in the human brain. In: Kaas J (ed) Evolution of nervous systems. The evolution of primate nervous systems. Academic, NewYork, pp 1–26

    Google Scholar 

  • DeFelipe J (2015) The anatomical problem posed by brain complexity and size: a potential solution. Front Neuroanat 9:104. doi:10.3389/fnana.2015.00104

    PubMed  PubMed Central  Google Scholar 

  • Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annu Rev Neurosci 18:193–222

    Article  CAS  PubMed  Google Scholar 

  • Dicke U, Roth G (2016) Neuronal factors determining high intelligence. Philos Trans R Soc Lond B 371:20150180. doi:10.1098/rstb.2015.0180

    Article  Google Scholar 

  • Donald M (1991) Origins of the modern mind: three stages in the evolution of culture and cognition. Harvard University Press, Cambridge

    Google Scholar 

  • Edelman GM, Tononi GA (2000) A universe of consciousness. Basic Books, New York

    Google Scholar 

  • Fabbro F, Aglioti SM, Bergamasco M, Clarici A, Panksepp J (2015) Evolutionary aspects of self and world consciousness in vertebrates. Front Hum Neurosci 9:157. doi:10.3389/fnhum.2015.00157

    Article  PubMed  PubMed Central  Google Scholar 

  • Falk D (2004) Prelinguistic evolution in early hominins: whence motherese? Behav Brain Sci 27:491–503

    PubMed  Google Scholar 

  • Finlay BL, Darlington DB (1995) Linked regularities in the development and evolution of mammalian brains. Science 268:1578–1584

    Article  CAS  PubMed  Google Scholar 

  • Finlay BL, Darlington DB, Nicastro N (2001) Developmental structure in brain evolution. Behav Brain Sci 24:263–278

    Article  CAS  PubMed  Google Scholar 

  • Frahm HD, Stephan H, Stephan M (1982) Comparison of brain structure volumes in Insectivora and primates. Part I Neocortex. J Hirnforsch 23:375–389

    CAS  PubMed  Google Scholar 

  • Gazzaniga MS, Ivry RB, Mangun GR (2008) Cognitive neurosciences: the biology of the mind, 3rd edn. W.W. Norton, New York

    Google Scholar 

  • Gillett G, Franz E (2013) John Hughlings Jackson: bridging theory and clinical observation. Lancet 381:528–529

    Article  PubMed  Google Scholar 

  • Gómez-Robles A, Hopkins WD, Sherwood CC (2014) Modular structure facilitates mosaic evolution of the brain in chimpanzees and humans. Nat Commun 5:5469. doi:10.1038/ncomms5469

    Article  CAS  Google Scholar 

  • Gould SJ (1976) Grades and clades revisited. In: Masterton RB, Hodos W, Jerison HJ (eds) Evolution, brain and behavior: persistent problems. Erlbaum, Hillsdale, pp 115–122

    Google Scholar 

  • Greenfield SA, Collins TF (2005) A neuroscientific approach to consciousness. Prog Brain Res 150:11–23

    Article  PubMed  Google Scholar 

  • Greenfield SA (1995) Journey to the centers of the mind. Freeman, New York

    Google Scholar 

  • Hauser MD, Yang C, Berwick RC, Tattersall I, Ryan MJ, Watumull J, Chomsky N, Lewontin RC (2014) The mystery of language evolution. Front Psychol 5:401. doi:10.3389/fpsyg.2014.00401

    PubMed  PubMed Central  Google Scholar 

  • Herculano-Houzel S (2009) The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci 3:31. doi:10.3389/neuro.09.031.2009

    Article  PubMed  PubMed Central  Google Scholar 

  • Herculano-Houzel S (2012) Neuronal scaling rules for primate brains: the primate advantage. Prog Brain Res 195:325–340

    Article  PubMed  Google Scholar 

  • Herculano-Houzel S, Collins CE, Wong P, Kaas JH, Lent R (2008) The basic nonuniformity of the cerebral cortex. Proc Natl Acad Sci U S A 105:12593–12598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herculano-Houzel S, Mota B, Wong P, Kaas JH (2010) Connectivity-driven white matter scaling and folding in primate cerebral cortex. Proc Natl Acad Sci U S A 107:19008–19013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrmann E, Call J, Hernandez-Lloreda MV, Hare B, Tomasello M (2007) Humans have evolved specialized skills of social cognition: the cultural intelligence hypothesis. Science 317:1360–1366

    Article  CAS  PubMed  Google Scholar 

  • Hill J, Inder T, Neil J, Dierker D, Harwell J, Van Essen D (2010) Similar patterns of cortical expansion during human development and evolution. Proc Natl Acad Sci U S A 107:13135–13140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillert DG (2015) On the evolving biology of language. Front Psychol 6:1796. doi:10.3389/fpsyg.2015.01796

    Article  PubMed  PubMed Central  Google Scholar 

  • Hofman MA (1988) Size and shape of the cerebral cortex in mammals. Part II. The cortical volume. Brain Behav Evol 32:17–26

    Article  CAS  PubMed  Google Scholar 

  • Hofman MA (1989) On the evolution and geometry of the brain in mammals. Prog Neurobiol 32:137–158

    Article  CAS  PubMed  Google Scholar 

  • Hofman MA (2001) Brain evolution in hominids: are we at the end of the road. In: Falk D, Gibson KR (eds) Evolutionary anatomy of the primate cerebral cortex. Cambridge University Press, Cambridge, pp 113–127

    Chapter  Google Scholar 

  • Hofman MA (2003) Of brains and minds: a neurobiological treatise on the nature of intelligence. Evol Cogn 9:178–188

    Google Scholar 

  • Hofman MA (2007) Brain evolution and intelligence in primates. In: Watanabe S, Hofman MA (eds) Integration of comparative neuroanatomy and cognition. Keio University Press, Tokyo, pp 33–53

    Google Scholar 

  • Hofman MA (2012) Design principles of the human brain: an evolutionary perspective. Prog Brain Res 195:373–390

    Article  PubMed  Google Scholar 

  • Hofman MA (2014) Evolution of the human brain: when bigger is better. Front Neuroanat 8:15. doi:10.3389/fnana.2014.00015

    Article  PubMed  PubMed Central  Google Scholar 

  • Hofman MA (2015) Evolution of the human brain: from matter to mind. In: Goldstein S, Naglieri JA, Princiotta D (eds) Handbook of intelligence: evolutionary theory, historical perspective and current concepts. Springer, New York, pp 65–82

    Google Scholar 

  • Hofman MA (2016) The fractal geometry of the human brain: an evolutionary perspective. In: Di Ieva A (ed) The fractal geometry of the brain. Springer, New York, pp 169–186

    Google Scholar 

  • Hofman MA, Falk D (eds) (2012) Evolution of the brain in primates. From neuron to behavior. Elsevier, Amsterdam

    Google Scholar 

  • Hughlings Jackson J (1884) Croonian lectures on the evolution and dissolution of the nervous system. Lancet 123:555–558

    Article  Google Scholar 

  • Isler K, Van Schaik CP (2014) How humans evolved large brains: comparative evidence. Evol Anthropol 23:65–75

    Article  PubMed  Google Scholar 

  • Jerison HJ (1973) Evolution of the brain and intelligence. Academic, New York

    Google Scholar 

  • Jerison HJ (1985) Animal intelligence as encephalization. Philos Trans R Soc Lond B 308:21–35

    Article  CAS  Google Scholar 

  • Jerison HJ (1991). Brain size and the evolution of mind. In: The 59th James Arthur lecture on the evolution of the human brain. American Museum of Natural History, New York

    Google Scholar 

  • Kaas JH (2000) Why is brain size so important: design problems and solutions as neocortex gets bigger or smaller. Brain Mind 1:7–23

    Article  Google Scholar 

  • Kaas JH (2012) The evolution of neocortex in primates. Prog Brain Res 195:91–102

    Article  PubMed  PubMed Central  Google Scholar 

  • Krubitzer L (2007) The magnificent compromise: cortical field evolution in mammals. Neuron 56:201–208

    Article  CAS  PubMed  Google Scholar 

  • Laughlin SB, Sejnowski TJ (2003) Communication in neural networks. Science 301:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefebvre L (2012) Primate encephalization. Prog Brain Res 195:393–412

    Article  PubMed  Google Scholar 

  • Lent R, Azevedo FAC, Andrade-Moraes CH, Pinto AVO (2012) How many neurons do you have? Some dogmas of quantitative neuroscience under revision. Eur J Neurosci 35:1–9

    Article  PubMed  Google Scholar 

  • Levinson SC (2016) Turn-taking in human communication—origins and implications for language processing. Trends Cogn Sci 20:6–14

    Article  PubMed  Google Scholar 

  • Lewitus E, Kelava I, Kalinka AT, Tomancak P, Huttner WB (2014) An adaptive threshold in mammalian neocortical evolution. PLoS Biol 12:e1002000. doi:10.1371/journal.pbio.1002000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lieberman P (2015) The evolution of language. In: Goldstein S, Naglieri JA, Princiotta D (eds) Handbook of intelligence: evolutionary theory, historical perspective and current concepts. Springer, New York, pp 47–64

    Google Scholar 

  • MacLeod C (2012) The missing link: evolution of the primate cerebellum. Prog Brain Res 195:165–187

    Article  PubMed  Google Scholar 

  • Macphail EM (1982) Brain and intelligence in vertebrates. Clarendon, Oxford

    Google Scholar 

  • Macphail EM, Bolhuis JJ (2001) The evolution of intelligence: adaptive specializations versus general process. Biol Rev 76:341–364

    Article  CAS  PubMed  Google Scholar 

  • Mayr E (1982) The growth of biological thought. Diversity, evolution and inheritance. Belknap, Cambridge

    Google Scholar 

  • Molnár Z, Kaas JH, De Carlos JA, Hevner RF, Lein E, NÄ•mec P (2014) Evolution and development of the mammalian cerebral cortex. Brain Behav Evol 83:126–139

    Article  PubMed  PubMed Central  Google Scholar 

  • Mota B, Herculano-Houzel S (2012) How the cortex gets its folds: an inside-out, connectivity-driven model for the scaling of mammalian cortical folding. Front Neuroanat 6:3. doi:10.3389/fnana.2012.00003

    Article  PubMed  PubMed Central  Google Scholar 

  • Mountcastle VB (1997) The columnar organization of the brain. Brain 120:701–722

    Article  PubMed  Google Scholar 

  • Nieuwenhuys R (1994) The neocortex: an overview of its evolutionary development, structural organization and synaptology. Anat Embryol 190:307–337

    Article  CAS  PubMed  Google Scholar 

  • Opris I, Casanova MF (2014) Prefrontal cortical minicolumn: from executive control to disrupted cognitive processing. Brain 137:1863–1875

    Article  PubMed  PubMed Central  Google Scholar 

  • Pagel M, Atkinson QD, Calude AS, Meade A (2013) Ultraconserved words point to deep language ancestry across Eurasia. Proc Natl Acad Sci U S A 110:8471–8476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panksepp J, Panksepp JB (2000) The seven sins of evolutionary psychology. Evol Cogn 6:108–131

    Google Scholar 

  • Panksepp J, Moskal JR, Panksepp JB, Kroes RA (2002) Comparative approaches in evolutionary psychology: molecular neuroscience meets the mind. Neuro Endocrinol Lett 4(23):105–115

    Google Scholar 

  • Papo D, Buldú JM, Boccaletti S, Bullmore ET (2014a) Complex network theory and the brain. Philos Trans R Soc Lond B 369:20130520. doi:10.1098/rstb.2013.0520

    Article  Google Scholar 

  • Papo D, Zani NM, Pineda-Pardo JA, Boccaletti S, Buldú JM (2014b) Functional brain networks: great expectations, hard times and the big leap forward. Philos Trans R Soc Lond B 369:20130525. doi:10.1098/rstb.2013.0525

    Article  Google Scholar 

  • Passingham RE (2008) What is special about the human brain? Oxford University Press, New York

    Book  Google Scholar 

  • Pay RG (1980) Contextual organization of unitary information processes in the cortex by the thalamus and basal ganglia and the central control of attention. Int J Neurosci 11:249–277

    Article  CAS  PubMed  Google Scholar 

  • Popper KR, Eccles JC (1977) The self and its brain. Springer, New York

    Book  Google Scholar 

  • Premack D (2004) Is language the key to human intelligence? Science 303:318–320

    Article  CAS  PubMed  Google Scholar 

  • Premack D (2007) Human and animal cognition: continuity and discontinuity. Proc Natl Acad Sci U S A 104:13861–13867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preuss TM (2001) The discovery of cerebral diversity: an unwelcome scientific revolution. In: Falk D, Gibson KR (eds) Evolutionary anatomy of the primate cerebral cortex. Cambridge University Press, Cambridge, pp 138–164

    Chapter  Google Scholar 

  • Preuss TM (2011) The human brain: rewired and running hot. Ann N Y Acad Sci 1225(Suppl. 1):E182–E191

    Article  PubMed  PubMed Central  Google Scholar 

  • Rakic P (2007) The radial edifice of cortical architecture: from neuronal silhouettes to genetic engineering. Brain Res Rev 55:204–219

    Article  PubMed  PubMed Central  Google Scholar 

  • Rakic P (2009) Evolution of the neocortex: a perspective from developmental biology. Nat Rev Neurosci 10:724–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Razavi MJ, Zhang T, Liu T, Wang X (2015) Cortical folding pattern and its consistency induced by biological growth. Sci Rep 5:14477. doi:10.1038/srep14477.

    Article  PubMed  CAS  Google Scholar 

  • Reader SM, Hager Y, Laland KN (2011) The evolution of primate general and cultural intelligence. Philo Trans R Soc Lond B 366:1017–1027

    Article  Google Scholar 

  • Rilling JK (2014) Comparative primate neurobiology and the evolution of brain language systems. Curr Opin Neurobiol 28:10–14

    Article  CAS  PubMed  Google Scholar 

  • Ringo JL (1991) Neuronal interconnection as a function of brain size. Brain Behav Evol 38:1–6

    Article  CAS  PubMed  Google Scholar 

  • Ringo JL, Doty RW, Demeter S, Simard PY (1994) Time is of the essence: a conjecture that hemispheric specialization arises from interhemispheric conduction delay. Cereb Cortex 4:331–343

    Article  CAS  PubMed  Google Scholar 

  • Rockland KS (2010) Five points on columns. Front Neuroanat 4:22. doi:10.3389/fnana.2010.00022.

    PubMed  PubMed Central  Google Scholar 

  • Ronan L, Fletcher PC (2015) From genes to folds: a review of cortical gyrification theory. Brain Struct Funct 220:2475–2483

    Article  CAS  PubMed  Google Scholar 

  • Roth G (2013) The long evolution of brains and minds. Springer, New York

    Book  Google Scholar 

  • Roth G, Dicke U (2012) Evolution of the brain and intelligence in primates. Prog Brain Res 195:413–430

    Article  PubMed  Google Scholar 

  • Schmahmann JD (2010) The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev 20:236–260

    Article  PubMed  Google Scholar 

  • Schoenemann PT (2006) Evolution of the size and functional areas of the human brain. Ann Rev Anthropol 35:379–406

    Article  Google Scholar 

  • Schoenemann PT, Sheehan MJ, Glotzer ID (2005) Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nat Neurosci 8:242–252

    Article  CAS  PubMed  Google Scholar 

  • Schoenemann, P.T. (2012) Evolution of brain and language. Prog Brain Res 195:443–459

    Google Scholar 

  • Sherwood CC, Bauernfeind AL, Bianchi S, Raghanti MA, Hof PR (2012) Human brain evolution writ large and small. Prog Brain Res 195:237–254

    Article  PubMed  Google Scholar 

  • Sherwood CC, Subiaul F, Zawidzki TW (2008) A natural history of the human mind: tracing evolutionary changes in brain and cognition. J Anat 212:426–454

    Article  PubMed  PubMed Central  Google Scholar 

  • Shettleworth SJ (2012a) Fundamentals of comparative cognition. Oxford University Press, New York

    Google Scholar 

  • Shettleworth SJ (2012b) Modularity, comparative cognition and human uniqueness. Philos Trans R Soc Lond B 367:2794–2801

    Article  Google Scholar 

  • Smaers JB, Soligo C (2013) Brain reorganization, not relative brain size, primarily characterizes anthropoid brain evolution. Proc R Soc Lond Ser B 280:20130269. doi:10.1098/rspb.2013.0269

    Article  CAS  Google Scholar 

  • Smaers JB, Dechmann DK, Goswami A, Soligo C, Safi K (2012) Comparative analyses of evolutionary rates reveal different pathways to encephalization in bats, carnivorans, and primates. Proc Natl Acad Sci U S A 109:18006–18011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smaers JB, Schleicher A, Zilles K, Vinicius L (2010) Frontal white matter volume in anthropoid primates. PLoS One 5:e9123. doi:10.1371/journal.pone.0009123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sporns O, Betzel RF (2016) Modular brain networks. Annu Rev Psychol 67:19.1–19.28

    Article  Google Scholar 

  • Sporns O, Chilavo DR, Kaiser M, Hilgetag CC (2004) Organization, development and function of complex brain networks. Trends Cogn Sci 8:418–425

    Article  PubMed  Google Scholar 

  • Sporns O, Honey CJ, Kötter R (2007) Identification and classification of hubs in brain networks. PLoS One 2:e1049. doi:10.1371/journal.pone.0001049

    Article  PubMed  PubMed Central  Google Scholar 

  • Stephan H, Frahm HD, Baron G (1981) New and revised data on volumes of brain structures in insectivores and primates. Folia Primatol 35:1–29

    Article  CAS  PubMed  Google Scholar 

  • Striedter GF (2005) Principles of brain evolution. Sinauer, Sunderland

    Google Scholar 

  • Striedter GF, Srinivasan S, Monuki ES (2015) Cortical folding: when, where, how, and why? Annu Rev Neurosci 38:291–307

    Article  CAS  PubMed  Google Scholar 

  • Suárez R, Gobius I, Richards LJ (2014) Evolution and development of interhemispheric connections in the vertebrate forebrain. Front Hum Neurosci 8:497. doi:10.3389/fnhum.2014.00497.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tononi G, Koch C (2015) Consciousness: here, there and everywhere? Philos Trans R Soc Lond B 370, pii: 20140167. doi:10.1098/rstb.2014.0167

  • Van den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci 31:15775–15786

    Article  PubMed  CAS  Google Scholar 

  • Van den Heuvel MP, Bullmore ET, Sporns O (2016) Comparative connectomes. Trends Cogn Sci 20:345–361

    Article  PubMed  Google Scholar 

  • Wang D, Liu H (2014) Functional connectivity architecture of the human brain: not all the same. Neuroscientist 20:432–438

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang SS-H, Shultz JR, Burish MJ, Harrison KH, Hof PR, Towns LC, Wagers MW, Wyatt KD (2008) Functional trade-offs in white matter axonal scaling. J Neurosci 28:4047–4056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X-J (2010) Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev 90:1195–1268

    Article  PubMed  PubMed Central  Google Scholar 

  • Wedeen VJ, Rosene DL, Wang R, Dai G, Mortazavi F, Hagmann P, Kaas JH, Tseng WY (2012) The geometric structure of the brain fiber pathway. Science 335:1628–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welker W (1990) Why does cerebral cortex fissure and fold? A review of determinants of gyri and sulci. In: Jones EG, Peters A (eds) Cerebral cortex, vol 8B. Plenum, New York, pp 23–136

    Chapter  Google Scholar 

  • Wen Q, Chklovskii DB (2005) Segregation of the brain into gray and white matter: a design minimizing conduction delays. PLoS Comput Biol 1:617–630

    Article  CAS  Google Scholar 

  • Young MP (1993) The organization of neural systems in the primate cerebral cortex. Proc R Soc Lond B 252:13–18

    Article  CAS  Google Scholar 

  • Zeman A (2001) Consciousness. Brain 124:1263–1289

    Article  CAS  PubMed  Google Scholar 

  • Zeman A (2005) What in the world is consciousness? Prog Brain Res 150:1–10

    Article  PubMed  Google Scholar 

  • Zhang K, Sejnowski TJ (2000) A universal scaling law between gray matter and white matter of cerebral cortex. Proc Natl Acad Sci U S A 97:5621–5626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel A. Hofman Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Hofman, M.A. (2017). On the Matter of Mind: Neural Complexity and Functional Dynamics of the Human Brain. In: Watanabe, S., Hofman, M., Shimizu, T. (eds) Evolution of the Brain, Cognition, and Emotion in Vertebrates. Brain Science. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56559-8_7

Download citation

Publish with us

Policies and ethics