Skip to main content
Log in

Intestinal cholesterol uptake: Comparison between mixed micelles containing lecithin or lysolecithin

  • Published:
Lipids

Abstract

The aim of our study was to define the mechanism by which cholesterol uptake is inhibited by lecithin but not by lysolecithin. The work compared the cholesterol uptake by everted rat jejunal sacs from bile salt-lecithin-cholesterol or bile salt-lysolecithin-cholesterol micelles. The micellar size and the cholesterol saturation were measured.

The size or molecular weight increases when the lecithin concentration rises, and the cholesterol uptake decreases and leads to zero when the micelles contain more than 30% lecithin. The size of bile salt-lysolecithin-cholesterol micelles is smaller than that of lecithin micelles in comparable molar ratios. Consistent with this result is the fact that, for a given phospholipid concentration, cholesterol uptake is greater in the presence of lysolecithin than in the presence of lecithin. The diffusion rate of the micelles through the unstirred water, layer decreases when micellar size increases. However, the comparison of uptakes from lecithin or lysolecithin micelles similar in size and in cholesterol saturation showed that the cholesterol uptake is still lower for lecithin micelles. This shows that with larger micelles some factor other than micellar size and cholesterol content of the micelles is important. We observe that lysolecithin absorption is 15-fold greater, than lecithin absorption. We suggest that lysolecithin absorption results in a rapid supersaturation with cholesterol leading to cholesterol absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saunders, D.R., and Sillery, J. (1976) Lipids 11, 830–832.

    Article  PubMed  CAS  Google Scholar 

  2. Rampone, A.J., and Long, L.R. (1977) Biochim. Biophys. Acta 486, 500–510.

    PubMed  CAS  Google Scholar 

  3. Thomson, A.B.R., and Cleland, L. (1981) Lipids 16, 881–887.

    PubMed  CAS  Google Scholar 

  4. Rampone, A.J., and Machida, C.M. (1981) J. Lipid Res. 22, 744–752.

    PubMed  CAS  Google Scholar 

  5. Rodgers, J.B., and O'Connor, P.J. (1975) Biochim. Biophys. Acta 409, 192–200.

    PubMed  CAS  Google Scholar 

  6. Reynier, M.O., Montet, J.C., Crotte, C., Marteau, C., and Gerolami, A. (1981) Biochim. Biophys. Acta 664, 616–619.

    PubMed  CAS  Google Scholar 

  7. Montet, J.C., Lindheimer, M. Reynier, M.O., Crotte, C., Bontemps, R., and Gerolami, A. (1982) Biochimie 64, 255–261.

    PubMed  CAS  Google Scholar 

  8. Westergaard, H., and Dietschy, J.M. (1976) J. Clin. Invest. 58, 97–108.

    PubMed  CAS  Google Scholar 

  9. Ammon, H.V., Thomas, P.J., and Phillips, S.F. (1979) Lipids 14, 395–400.

    Article  PubMed  CAS  Google Scholar 

  10. Montet, J.C., Reynier, M.O., Montet, A.M., and Gerolami, A. (1979) Biochim. Biophys. Acta 575, 289–294.

    PubMed  CAS  Google Scholar 

  11. Carey, M.C. (1978) J. Lipid Res. 19, 945–955.

    PubMed  CAS  Google Scholar 

  12. Yphantis, D.A. (1964) Biochemistry 3, 297–317.

    Article  PubMed  CAS  Google Scholar 

  13. Charles, M., Astier, M., Sauve, P. and Desnuelle, P. (1975) Eur. J. Biochem 58, 555–559.

    Article  PubMed  CAS  Google Scholar 

  14. Laurent, T., and Killander, J. (1964) J. Chromatog. 14, 317–330.

    Article  CAS  Google Scholar 

  15. Mazer M.A., and Carey, M.C. (1983) Biochemistry 22, 426–442.

    Article  PubMed  CAS  Google Scholar 

  16. Small, D.M. (1971) In The Bile Acids p. 249–356, Nair, P.P., and Kritchevsky, D., eds., Plenum Press, New York-London.

    Google Scholar 

  17. Mazer, N.A., Benedek, G.B., and Carey, M.C. (1980) Biochemistry 19, 601–615.

    Article  PubMed  CAS  Google Scholar 

  18. O'Doherty, P.J.A., Kakis, G., and Kuksis, A. (1973) Lipids 8, 249–255.

    Article  PubMed  Google Scholar 

  19. Rand, R.P., Pangborn, W.A., Purdon, A.D., and Tinker, D.O. (1975) Can. J. Biochem. 53, 189–195.

    PubMed  CAS  Google Scholar 

  20. Mansbach, C.M., Cohen, R.S., and Leff, P.B. (1975) J. Clin. Invest. 56, 781–791.

    PubMed  CAS  Google Scholar 

  21. Ammon, H.V., Loeffler, R.E., and Luedtke, L.A. (1983) Lipids 18, 428–433.

    PubMed  CAS  Google Scholar 

  22. Bolin, T., Sjodahl, R., Sundquist, T., and Tagesson, C. (1981) Scand. J. Gastroent. 16, 897–901.

    Article  PubMed  CAS  Google Scholar 

  23. Wilson, F.A., and Dietschy, J.M. (1972) J. Clin. Invest. 51, 3015–3025.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Reynier, M.O., Lafont, H., Crotte, C. et al. Intestinal cholesterol uptake: Comparison between mixed micelles containing lecithin or lysolecithin. Lipids 20, 145–150 (1985). https://doi.org/10.1007/BF02534246

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02534246

Keywords

Navigation