Skip to main content

Localising Receptors and Channels Across the Dendritic Arbour

  • Chapter
  • First Online:
Dendrites

Abstract

In central neurons, the strength and the number of excitatory and inhibitory synapses to a large extent determine the transfer of information from one neuron to another. The presence of multiple active conductances distributed throughout the highly arborised dendritic tree endows dendrites with the capacity to filter and modulate the evoked synaptic potentials and allows adequate representation of distal synaptic inputs in the soma for further integration and processing. Furthermore, active properties of the dendritic membrane enable dynamic modulation of neuronal excitability and thereby influence the firing output. In this chapter, we will review the distribution of dominant voltage- and ligand-gated ion channels and receptors in dendrites and their contribution to several aspects of dendritic computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adelman WJ Jr, Palti Y (1969) The effects of external potassium and long duration voltage conditioning on the amplitude of sodium currents in the giant axon of the squid, Loligo pealei. J Gen Phys 54(5):589–606

    Article  CAS  Google Scholar 

  • Adelman JP, Maylie J, Sah P (2012) Small-conductance Ca2+ -activated K+ channels: form and function. Annu Rev Physiol 74:245–269. doi:10.1146/annurev-physiol-020911-153336

    Article  CAS  PubMed  Google Scholar 

  • Ahmad M, Polepalli JS, Goswami D, Yang X, Kaeser-Woo YJ, Sudhof TC, Malenka RC (2012) Postsynaptic complexin controls AMPA receptor exocytosis during LTP. Neuron 73(2):260–267. doi:10.1016/j.neuron.2011.11.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alger BE, Nicoll RA (1982) Feed-forward dendritic inhibition in rat hippocampal pyramidal cells studied in vitro. J Physiol 328:105–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alonso G, Widmer H (1997) Clustering of KV4.2 potassium channels in postsynaptic membrane of rat supraoptic neurons: an ultrastructural study. Neuroscience 77(3):617–621. doi:S0306452296005611 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Aman TK, Grieco-Calub TM, Chen C, Rusconi R, Slat EA, Isom LL, Raman IM (2009) Regulation of persistent Na current by interactions between beta subunits of voltage-gated Na channels. J Neurosci 29(7):2027–2042. doi:10.1523/JNEUROSCI.4531-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An WF, Bowlby MR, Betty M, Cao J, Ling HP, Mendoza G, Hinson JW, Mattsson KI, Strassle BW, Trimmer JS, Rhodes KJ (2000) Modulation of A-type potassium channels by a family of calcium sensors. Nature 403(6769):553–556. doi:10.1038/35000592

    Article  CAS  PubMed  Google Scholar 

  • Anderson AE, Adams JP, Qian Y, Cook RG, Pfaffinger PJ, Sweatt JD (2000) Kv4.2 phosphorylation by cyclic AMP-dependent protein kinase. J Biol Chem 275(8):5337–5346

    Article  CAS  PubMed  Google Scholar 

  • Anderson D, Mehaffey WH, Iftinca M, Rehak R, Engbers JD, Hameed S, Zamponi GW, Turner RW (2010) Regulation of neuronal activity by Cav3-Kv4 channel signaling complexes. Nat Neurosci 13(3):333–337. doi:nn.2493 [pii]; doi:10.1038/nn.2493

    Article  CAS  PubMed  Google Scholar 

  • Anderson D, Engbers JD, Heath NC, Bartoletti TM, Mehaffey WH, Zamponi GW, Turner RW (2013) The Cav3-Kv4 complex acts as a calcium sensor to maintain inhibitory charge transfer during extracellular calcium fluctuations. J Neurosci 33(18):7811–7824. doi:33/18/7811 [pii];10.1523/JNEUROSCI.5384-12.2013 [doi]

    Article  CAS  PubMed  Google Scholar 

  • Andrasfalvy BK, Magee JC (2001) Distance-dependent increase in AMPA receptor number in the dendrites of adult hippocampal CA1 pyramidal neurons. J Neurosci 21(23):9151–9159

    CAS  PubMed  Google Scholar 

  • Andrasfalvy BK, Magee JC (2004) Changes in AMPA receptor currents following LTP induction on rat CA1 pyramidal neurones. J Physiol 559(Pt 2):543–554. doi:10.1113/jphysiol.2004.065219 jphysiol.2004.065219 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anggono V, Huganir RL (2012) Regulation of AMPA receptor trafficking and synaptic plasticity. Curr Opin Neurobiol 22(3):461–469. doi:10.1016/j.conb.2011.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araya R, Jiang J, Eisenthal KB, Yuste R (2006) The spine neck filters membrane potentials. Proc Natl Acad Sci U S A 103(47):17961–17966. doi:10.1073/pnas.0608755103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araya R, Nikolenko V, Eisenthal KB, Yuste R (2007) Sodium channels amplify spine potentials. Proc Natl Acad Sci U S A 104(30):12347–12352. doi:10.1073/pnas.0705282104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ariav G, Polsky A, Schiller J (2003) Submillisecond precision of the input-output transformation function mediated by fast sodium dendritic spikes in basal dendrites of CA1 pyramidal neurons. J Neurosci 23(21):7750–7758

    CAS  PubMed  Google Scholar 

  • Azimi-Zonooz A, Kawa CB, Dowell CD, Olivera BM (2001) Autoradiographic localization of N-type VGCCs in gerbil hippocampus and failure of omega-conotoxin MVIIA to attenuate neuronal injury after transient cerebral ischemia. Brain Res 907(1–2):61–70

    Article  CAS  PubMed  Google Scholar 

  • Bankston JR, Camp SS, DiMaio F, Lewis AS, Chetkovich DM, Zagotta WN (2012) Structure and stoichiometry of an accessory subunit TRIP8b interaction with hyperpolarization-activated cyclic nucleotide-gated channels. Proc Natl Acad Sci U S A 109(20):7899–7904. doi:1201997109 [pii];10.1073/pnas.1201997109 [doi]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bannai H, Levi S, Schweizer C, Inoue T, Launey T, Racine V, Sibarita JB, Mikoshiba K, Triller A (2009) Activity-dependent tuning of inhibitory neurotransmission based on GABAAR diffusion dynamics. Neuron 62(5):670–682. doi:10.1016/j.neuron.2009.04.023

    Article  CAS  PubMed  Google Scholar 

  • Bannister NJ, Larkman AU (1995) Dendritic morphology of CA1 pyramidal neurones from the rat hippocampus: II. Spine distributions. J Comp Neurol 360(1):161–171. doi:10.1002/cne.903600112

    Article  CAS  PubMed  Google Scholar 

  • Bats C, Groc L, Choquet D (2007) The interaction between Stargazin and PSD-95 regulates AMPA receptor surface trafficking. Neuron 53(5):719–734

    Article  CAS  PubMed  Google Scholar 

  • Becker AJ, Pitsch J, Sochivko D, Opitz T, Staniek M, Chen CC, Campbell KP, Schoch S, Yaari Y, Beck H (2008) Transcriptional upregulation of Cav3.2 mediates epileptogenesis in the pilocarpine model of epilepsy. J Neurosci 28(49):13341–13353. doi:10.1523/JNEUROSCI.1421-08.2008 28/49/13341 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Beenhakker MP, Huguenard JR (2010) Astrocytes as gatekeepers of GABAB receptor function. J Neurosci 30(45):15262–15276. doi:10.1523/JNEUROSCI.3243-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bettler B, Kaupmann K, Mosbacher J, Gassmann M (2004) Molecular structure and physiological functions of GABA(B) receptors. Physiol Rev 84(3):835–867. doi:10.1152/physrev.00036.2003

    Article  CAS  PubMed  Google Scholar 

  • Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18(24):10464–10472

    CAS  PubMed  Google Scholar 

  • Birnbaum SG, Varga AW, Yuan LL, Anderson AE, Sweatt JD, Schrader LA (2004) Structure and function of Kv4-family transient potassium channels. Physiol Rev 84(3):803–833. doi:10.1152/physrev.00039.2003 [doi];84/3/803 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Bischofberger J, Jonas P (1997) Action potential propagation into the presynaptic dendrites of rat mitral cells. J Physiol 504(Pt 2):359–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39. doi:10.1038/361031a0

    Article  CAS  PubMed  Google Scholar 

  • Bloodgood BL, Sabatini BL (2007) Nonlinear regulation of unitary synaptic signals by CaV(2.3) voltage-sensitive calcium channels located in dendritic spines. Neuron 53(2):249–260

    Article  CAS  PubMed  Google Scholar 

  • Brickley SG, Mody I (2012) Extrasynaptic GABA(A) receptors: their function in the CNS and implications for disease. Neuron 73(1):23–34. doi:10.1016/j.neuron.2011.12.012 S0896-6273(11)01093-2 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304(5679):1926–1929. doi:10.1126/science.1099745

    Article  CAS  PubMed  Google Scholar 

  • Buzsaki G, Kandel A (1998) Somadendritic backpropagation of action potentials in cortical pyramidal cells of the awake rat. J Neurophysiol 79(3):1587–1591

    CAS  PubMed  Google Scholar 

  • Buzsaki G, Penttonen M, Nadasdy Z, Bragin A (1996) Pattern and inhibition-dependent invasion of pyramidal cell dendrites by fast spikes in the hippocampus in vivo. Proc Natl Acad Sci U S A 93(18):9921–9925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai X, Liang CW, Muralidharan S, Kao JP, Tang CM, Thompson SM (2004) Unique roles of SK and Kv4.2 potassium channels in dendritic integration. Neuron 44(2):351–364. doi:10.1016/j.neuron.2004.09.026

    Article  CAS  PubMed  Google Scholar 

  • Callaway JC, Ross WN (1997) Spatial distribution of synaptically activated sodium concentration changes in cerebellar Purkinje neurons. J Neurophysiol 77(1):145–152

    CAS  PubMed  Google Scholar 

  • Campanac E, Daoudal G, Ankri N, Debanne D (2008) Downregulation of dendritic I(h) in CA1 pyramidal neurons after LTP. J Neurosci 28(34):8635–8643. doi:28/34/8635 [pii];10.1523/JNEUROSCI.1411-08.2008 [doi]

    Article  CAS  PubMed  Google Scholar 

  • Carta M, Opazo P, Veran J, Athane A, Choquet D, Coussen F, Mulle C (2013) CaMKII-dependent phosphorylation of GluK5 mediates plasticity of kainate receptors. EMBO J 32(4):496–510. doi:10.1038/emboj.2012.334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carta M, Fievre S, Gorlewicz A, Mulle C (2014) Kainate receptors in the hippocampus. Eur J Neurosci 39(11):1835–1844. doi:10.1111/ejn.12590

    Article  PubMed  Google Scholar 

  • Cash S, Yuste R (1999) Linear summation of excitatory inputs by CA1 pyramidal neurons. Neuron 22(2):383–394

    Article  CAS  PubMed  Google Scholar 

  • Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16:521–555. doi:10.1146/annurev.cellbio.16.1.521

    Article  CAS  PubMed  Google Scholar 

  • Catterall WA (2012) Voltage-gated sodium channels at 60: structure, function and pathophysiology. J Physiol 590(Pt 11):2577–2589. doi:10.1113/jphysiol.2011.224204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandler WK, Meves H (1970) Slow changes in membrane permeability and long-lasting action potentials in axons perfused with fluoride solutions. J Physiol 211(3):707–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chattipakorn SC, McMahon LL (2002) Pharmacological characterization of glycine-gated chloride currents recorded in rat hippocampal slices. J Neurophysiol 87(3):1515–1525

    CAS  PubMed  Google Scholar 

  • Chen X, Johnston D (2004) Properties of single voltage-dependent K+ channels in dendrites of CA1 pyramidal neurones of rat hippocampus. J Physiol 559(Pt 1):187–203. doi:10.1113/jphysiol.2004.068114 [doi];jphysiol.2004.068114 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Wang J, Siegelbaum SA (2001) Properties of hyperpolarization-activated pacemaker current defined by coassembly of HCN1 and HCN2 subunits and basal modulation by cyclic nucleotide. J Gen Physiol 117(5):491–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen RQ, Wang SH, Yao W, Wang JJ, Ji F, Yan JZ, Ren SQ, Chen Z, Liu SY, Lu W (2011) Role of glycine receptors in glycine-induced LTD in hippocampal CA1 pyramidal neurons. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 36(9):1948–1958. doi:10.1038/npp.2011.86

    Article  CAS  Google Scholar 

  • Chen S, Benninger F, Yaari Y (2014) Role of small conductance Ca(2)(+)-activated K(+) channels in controlling CA1 pyramidal cell excitability. J Neurosci 34(24):8219–8230. doi:10.1523/JNEUROSCI.0936-14.2014

    Article  PubMed  CAS  Google Scholar 

  • Christie BR, Eliot LS, Ito K, Miyakawa H, Johnston D (1995) Different Ca2+ channels in soma and dendrites of hippocampal pyramidal neurons mediate spike-induced Ca2+ influx. J Neurophysiol 73(6):2553–2557

    CAS  PubMed  Google Scholar 

  • Coetzee WA, Amarillo Y, Chiu J, Chow A, Lau D, McCormack T, Moreno H, Nadal MS, Ozaita A, Pountney D, Saganich M, de Vega-Saenz ME, Rudy B (1999) Molecular diversity of K+ channels. Ann N Y Acad Sci 868:233–285

    Article  CAS  PubMed  Google Scholar 

  • Colbert CM, Johnston D (1996) Axonal action-potential initiation and Na+ channel densities in the soma and axon initial segment of subicular pyramidal neurons. J Neurosci 16(21):6676–6686

    CAS  PubMed  Google Scholar 

  • Colbert CM, Pan E (2002) Ion channel properties underlying axonal action potential initiation in pyramidal neurons. Nat Neurosci 5(6):533–538. doi:10.1038/nn857

    Article  CAS  PubMed  Google Scholar 

  • Colbert CM, Magee JC, Hoffman DA, Johnston D (1997) Slow recovery from inactivation of Na+ channels underlies the activity-dependent attenuation of dendritic action potentials in hippocampal CA1 pyramidal neurons. J Neurosci 17(17):6512–6521

    CAS  PubMed  Google Scholar 

  • Constals A, Penn AC, Compans B, Toulme E, Phillipat A, Marais S, Retailleau N, Hafner AS, Coussen F, Hosy E, Choquet D (2015) Glutamate-induced AMPA receptor desensitization increases their mobility and modulates short-term plasticity through unbinding from Stargazin. Neuron 85(4):787–803. doi:10.1016/j.neuron.2015.01.012

    Article  CAS  PubMed  Google Scholar 

  • Contractor A, Mulle C, Swanson GT (2011) Kainate receptors coming of age: milestones of two decades of research. Trends Neurosci 34(3):154–163. doi:10.1016/j.tins.2010.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook EP, Johnston D (1999) Voltage-dependent properties of dendrites that eliminate location-dependent variability of synaptic input. J Neurophysiol 81(2):535–543

    CAS  PubMed  Google Scholar 

  • Costa MR, Catterall WA (1984a) Phosphorylation of the alpha subunit of the sodium channel by protein kinase C. Cell Mol Neurobiol 4(3):291–297

    Article  CAS  PubMed  Google Scholar 

  • Costa MR, Catterall WA (1984b) Cyclic AMP-dependent phosphorylation of the alpha subunit of the sodium channel in synaptic nerve ending particles. J Biol Chem 259(13):8210–8218

    CAS  PubMed  Google Scholar 

  • Cuntz H, Mathy A, Hausser M (2012) A scaling law derived from optimal dendritic wiring. Proc Natl Acad Sci U S A 109(27):11014–11018. doi:10.1073/pnas.1200430109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czondor K, Mondin M, Garcia M, Heine M, Frischknecht R, Choquet D, Sibarita JB, Thoumine OR (2012) Unified quantitative model of AMPA receptor trafficking at synapses. Proc Natl Acad Sci U S A 109(9):3522–3527. doi:10.1073/pnas.1109818109 1109818109 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debarbieux F, Audinat E, Charpak S (2003) Action potential propagation in dendrites of rat mitral cells in vivo. J Neurosci 23(13):5553–5560

    CAS  PubMed  Google Scholar 

  • Destexhe A, Pare D (1999) Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J Neurophysiol 81(4):1531–1547

    CAS  PubMed  Google Scholar 

  • Di Biase V, Tuluc P, Campiglio M, Obermair GJ, Heine M, Flucher BE (2011) Surface traffic of dendritic CaV1.2 calcium channels in hippocampal neurons. J Neurosci 31(38):13682–13694. doi:31/38/13682 [pii] 10.1523/JNEUROSCI.2300-11.2011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dutertre S, Becker CM, Betz H (2012) Inhibitory glycine receptors: an update. J Biol Chem 287(48):40216–40223. doi:10.1074/jbc.R112.408229 R112.408229 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eggermann E, Bucurenciu I, Goswami SP, Jonas P (2012) Nanodomain coupling between Ca(2)(+) channels and sensors of exocytosis at fast mammalian synapses. Nat Rev Neurosci 13(1):7–21. doi:10.1038/nrn3125 nrn3125 [pii]

    Article  CAS  Google Scholar 

  • Ehlers MD (2000) Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron 28(2):511–525

    Article  CAS  PubMed  Google Scholar 

  • Eilers J, Konnerth A (1997) Dendritic signal integration. Curr Opin Neurobiol 7(3):385–390

    Article  CAS  PubMed  Google Scholar 

  • Espinosa JS, Wheeler DG, Tsien RW, Luo L (2009) Uncoupling dendrite growth and patterning: single-cell knockout analysis of NMDA receptor 2B. Neuron 62(2):205–217. doi:10.1016/j.neuron.2009.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan Y, Fricker D, Brager DH, Chen X, Lu HC, Chitwood RA, Johnston D (2005) Activity-dependent decrease of excitability in rat hippocampal neurons through increases in I(h). Nat Neurosci 8(11):1542–1551. doi:nn1568 [pii];10.1038/nn1568 [doi]

    Article  CAS  PubMed  Google Scholar 

  • Featherstone DE, Shippy SA (2008) Regulation of synaptic transmission by ambient extracellular glutamate. Neuroscientist 14(2):171–181. doi:1073858407308518 [pii] 10.1177/1073858407308518

    Article  CAS  PubMed  Google Scholar 

  • Frick A, Magee J, Johnston D (2004) LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites. Nat Neurosci 7(2):126–135. doi:10.1038/nn1178 [doi];nn1178 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Fritschy JM, Panzanelli P (2014) GABAA receptors and plasticity of inhibitory neurotransmission in the central nervous system. Eur J Neurosci 39(11):1845–1865. doi:10.1111/ejn.12534

    Article  PubMed  Google Scholar 

  • Gasparini S, Migliore M, Magee JC (2004) On the initiation and propagation of dendritic spikes in CA1 pyramidal neurons. J Neurosci Off J Soc Neurosci 24(49):11046–11056. doi:10.1523/JNEUROSCI.2520-04.2004

    Article  CAS  Google Scholar 

  • Gerges NZ, Backos DS, Rupasinghe CN, Spaller MR, Esteban JA (2006) Dual role of the exocyst in AMPA receptor targeting and insertion into the postsynaptic membrane. EMBO J 25(8):1623–1634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillessen T, Alzheimer C (1997) Amplification of EPSPs by low Ni(2+)- and amiloride-sensitive Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. J Neurophysiol 77(3):1639–1643

    CAS  PubMed  Google Scholar 

  • Goldberg JH, Tamas G, Aronov D, Yuste R (2003) Calcium microdomains in aspiny dendrites. Neuron 40(4):807–821

    Article  CAS  PubMed  Google Scholar 

  • Goldin AL (2001) Resurgence of sodium channel research. Annu Rev Physiol 63:871–894. doi:10.1146/annurev.physiol.63.1.871

    Article  CAS  PubMed  Google Scholar 

  • Golding NL, Spruston N (1998) Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal CA1 pyramidal neurons. Neuron 21(5):1189–1200

    Article  CAS  PubMed  Google Scholar 

  • Golding NL, Jung HY, Mickus T, Spruston N (1999) Dendritic calcium spike initiation and repolarization are controlled by distinct potassium channel subtypes in CA1 pyramidal neurons. J Neurosci Off J Soc Neurosci 19(20):8789–8798

    CAS  Google Scholar 

  • Golding NL, Staff NP, Spruston N (2002) Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418(6895):326–331. doi:10.1038/nature00854

    Article  CAS  PubMed  Google Scholar 

  • Golding NL, Mickus TJ, Katz Y, Kath WL, Spruston N (2005) Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites. J Physiol 568(Pt 1):69–82. doi:10.1113/jphysiol.2005.086793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grienberger C, Chen X, Konnerth A (2014) NMDA receptor-dependent multidendrite Ca(2+) spikes required for hippocampal burst firing in vivo. Neuron 81(6):1274–1281. doi:10.1016/j.neuron.2014.01.014

    Article  CAS  PubMed  Google Scholar 

  • Groc L, Heine M, Cognet L, Brickley K, Stephenson FA, Lounis B, Choquet D (2004) Differential activity-dependent regulation of the lateral mobilities of AMPA and NMDA receptors. Nat Neurosci 7(7):695–696

    Article  CAS  PubMed  Google Scholar 

  • Groc L, Heine M, Cousins SL, Stephenson FA, Lounis B, Cognet L, Choquet D (2006) NMDA receptor surface mobility depends on NR2A-2B subunits. Proc Natl Acad Sci U S A 103(49):18769–18774. doi:0605238103 [pii] 10.1073/pnas.0605238103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grover LM, Teyler TJ (1990) Two components of long-term potentiation induced by different patterns of afferent activation. Nature 347(6292):477–479. doi:10.1038/347477a0

    Article  CAS  PubMed  Google Scholar 

  • Gu N, Vervaeke K, Storm JF (2007) BK potassium channels facilitate high-frequency firing and cause early spike frequency adaptation in rat CA1 hippocampal pyramidal cells. J Physiol 580(Pt.3):859–882. doi:10.1113/jphysiol.2006.126367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutfreund Y, yarom Y, Segev I (1995) Subthreshold oscillations and resonant frequency in guinea-pig cortical neurons: physiology and modelling. J Physiol 483(Pt 3):621–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn G, Bujan AF, Fregnac Y, Aertsen A, Kumar A (2014) Communication through resonance in spiking neuronal networks. PLoS Comput Biol 10(8), e1003811. doi:10.1371/journal.pcbi.1003811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11(10):682–696. doi:10.1038/nrn2911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassinger TD, Atkinson PB, Strecker GJ, Whalen LR, Dudek FE, Kossel AH, Kater SB (1995) Evidence for glutamate-mediated activation of hippocampal neurons by glial calcium waves. J Neurobiol 28(2):159–170. doi:10.1002/neu.480280204

    Article  CAS  PubMed  Google Scholar 

  • Hausser M, Spruston N, Stuart GJ (2000) Diversity and dynamics of dendritic signaling. Science 290(5492):739–744

    Article  CAS  PubMed  Google Scholar 

  • He C, Chen F, Li B, Hu Z (2014) Neurophysiology of HCN channels: from cellular functions to multiple regulations. Prog Neurobiol 112:1–23. doi:S0301-0082(13)00101-9 [pii];10.1016/j.pneurobio.2013.10.001 [doi]

    Article  CAS  PubMed  Google Scholar 

  • Heine M, Groc L, Frischknecht R, Beique JC, Lounis B, Rumbaugh G, Huganir RL, Cognet L, Choquet D (2008) Surface mobility of postsynaptic AMPARs tunes synaptic transmission. Science 320(5873):201–205. doi:320/5873/201 [pii] 10.1126/science.1152089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hell JW, Westenbroek RE, Warner C, Ahlijanian MK, Prystay W, Gilbert MM, Snutch TP, Catterall WA (1993) Identification and differential subcellular localization of the neuronal class C and class D L-type calcium channel alpha 1 subunits. J Cell Biol 123(4):949–962

    Article  CAS  PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF (1952a) Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol 116(4):449–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgkin AL, Huxley AF (1952b) The components of membrane conductance in the giant axon of Loligo. J Physiol 116(4):473–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgkin AL, Huxley AF (1952c) The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J Physiol 116(4):497–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgkin AL, Huxley AF (1952d) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffman DA, Johnston D (1998) Downregulation of transient K+ channels in dendrites of hippocampal CA1 pyramidal neurons by activation of PKA and PKC. J Neurosci 18(10):3521–3528

    CAS  PubMed  Google Scholar 

  • Hoffman DA, Magee JC, Colbert CM, Johnston D (1997) K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387(6636):869–875. doi:10.1038/43119

    Article  CAS  PubMed  Google Scholar 

  • Hoogland TM, Saggau P (2004) Facilitation of L-type Ca2+ channels in dendritic spines by activation of beta2 adrenergic receptors. J Neurosci 24(39):8416–8427. doi:10.1523/JNEUROSCI.1677-04.2004 24/39/8416 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Hutcheon B, Yarom Y (2000) Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci 23(5):216–222

    Article  CAS  PubMed  Google Scholar 

  • Hutcheon B, Miura RM, Puil E (1996) Models of subthreshold membrane resonance in neocortical neurons. J Neurophysiol 76(2):698–714

    CAS  PubMed  Google Scholar 

  • Iafrati J, Orejarena MJ, Lassalle O, Bouamrane L, Gonzalez-Campo C, Chavis P (2014) Reelin, an extracellular matrix protein linked to early onset psychiatric diseases, drives postnatal development of the prefrontal cortex via GluN2B-NMDARs and the mTOR pathway. Mol Psychiatry 19(4):417–426. doi:10.1038/mp.2013.66

    Article  CAS  PubMed  Google Scholar 

  • Isom LL, De Jongh KS, Patton DE, Reber BF, Offord J, Charbonneau H, Walsh K, Goldin AL, Catterall WA (1992) Primary structure and functional expression of the beta 1 subunit of the rat brain sodium channel. Science 256(5058):839–842

    Article  CAS  PubMed  Google Scholar 

  • Isomura Y, Fujiwara-Tsukamoto Y, Imanishi M, Nambu A, Takada M (2002) Distance-dependent Ni(2+)-sensitivity of synaptic plasticity in apical dendrites of hippocampal CA1 pyramidal cells. J Neurophysiol 87(2):1169–1174

    CAS  PubMed  Google Scholar 

  • Ito K, Miura M, Furuse H, Zhixiong C, Kato H, Yasutomi D, Inoue T, Mikoshiba K, Kimura T, Sakakibara S et al (1995) Voltage-gated Ca2+ channel blockers, omega-AgaIVA and Ni2+, suppress the induction of theta-burst induced long-term potentiation in guinea-pig hippocampal CA1 neurons. Neurosci Lett 183(1–2):112–115

    Article  CAS  PubMed  Google Scholar 

  • Jaffe DB, Carnevale NT (1999) Passive normalization of synaptic integration influenced by dendritic architecture. J Neurophysiol 82(6):3268–3285

    CAS  PubMed  Google Scholar 

  • Jaffe DB, Johnston D, Lasser-Ross N, Lisman JE, Miyakawa H, Ross WN (1992) The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons. Nature 357(6375):244–246. doi:10.1038/357244a0

    Article  CAS  PubMed  Google Scholar 

  • Jaskolski F, Coussen F, Mulle C (2005) Subcellular localization and trafficking of kainate receptors. Trends Pharmacol Sci 26(1):20–26. doi:S0165-6147(04)00314-1 [pii] 10.1016/j.tips.2004.11.008

    Article  CAS  PubMed  Google Scholar 

  • Jerng HH, Pfaffinger PJ (2014) Modulatory mechanisms and multiple functions of somatodendritic A-type K (+) channel auxiliary subunits. Front Cell Neurosci 8:82. doi:10.3389/fncel.2014.00082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnston D, Hoffman DA, Magee JC, Poolos NP, Watanabe S, Colbert CM, Migliore M (2000) Dendritic potassium channels in hippocampal pyramidal neurons. J Physiol 525(Pt 1):75–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung SC, Hoffman DA (2009) Biphasic somatic A-type K channel downregulation mediates intrinsic plasticity in hippocampal CA1 pyramidal neurons. PLoS ONE 4(8):e6549. doi:10.1371/journal.pone.0006549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jurado S (2014) The dendritic SNARE fusion machinery involved in AMPARs insertion during long-term potentiation. Front Cell Neurosci 8:407. doi:10.3389/fncel.2014.00407

    Article  PubMed  PubMed Central  Google Scholar 

  • Jurado S, Goswami D, Zhang Y, Molina AJ, Sudhof TC, Malenka RC (2013) LTP requires a unique postsynaptic SNARE fusion machinery. Neuron 77(3):542–558. doi:10.1016/j.neuron.2012.11.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamondi A, Acsady L, Buzsaki G (1998) Dendritic spikes are enhanced by cooperative network activity in the intact hippocampus. J Neurosci Off J Soc Neurosci 18(10):3919–3928

    CAS  Google Scholar 

  • Karpova A, Mikhaylova M, Bera S, Bar J, Reddy PP, Behnisch T, Rankovic V, Spilker C, Bethge P, Sahin J, Kaushik R, Zuschratter W, Kahne T, Naumann M, Gundelfinger ED, Kreutz MR (2013) Encoding and transducing the synaptic or extrasynaptic origin of NMDA receptor signals to the nucleus. Cell 152(5):1119–1133. doi:10.1016/j.cell.2013.02.002

    Article  CAS  PubMed  Google Scholar 

  • Kasugai Y, Swinny JD, Roberts JD, Dalezios Y, Fukazawa Y, Sieghart W, Shigemoto R, Somogyi P (2010) Quantitative localisation of synaptic and extrasynaptic GABAA receptor subunits on hippocampal pyramidal cells by freeze-fracture replica immunolabelling. Eur J Neurosci 32(11):1868–1888. doi:10.1111/j.1460-9568.2010.07473.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Katz Y, Menon V, Nicholson DA, Geinisman Y, Kath WL, Spruston N (2009) Synapse distribution suggests a two-stage model of dendritic integration in CA1 pyramidal neurons. Neuron 63(2):171–177. doi:10.1016/j.neuron.2009.06.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufmann WA, Kasugai Y, Ferraguti F, Storm JF (2010) Two distinct pools of large-conductance calcium-activated potassium channels in the somatic plasma membrane of central principal neurons. Neuroscience 169(3):974–986. doi:10.1016/j.neuroscience.2010.05.070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kavalali ET, Zhuo M, Bito H, Tsien RW (1997) Dendritic Ca2+ channels characterized by recordings from isolated hippocampal dendritic segments. Neuron 18(4):651–663

    Article  CAS  PubMed  Google Scholar 

  • Keck T, Lillis KP, Zhou YD, White JA (2008) Frequency-dependent glycinergic inhibition modulates plasticity in hippocampus. J Neurosci 28(29):7359–7369. doi:10.1523/JNEUROSCI.5618-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy MJ, Davison IG, Robinson CG, Ehlers MD (2010) Syntaxin-4 defines a domain for activity-dependent exocytosis in dendritic spines. Cell 141(3):524–535. doi:10.1016/j.cell.2010.02.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerti-Szigeti K, Nusser Z, Eyre MD (2014) Synaptic GABAA receptor clustering without the gamma2 subunit. J Neurosci 34(31):10219–10233. doi:10.1523/JNEUROSCI.1721-14.2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kessels HW, Kopec CD, Klein ME, Malinow R (2009) Roles of stargazin and phosphorylation in the control of AMPA receptor subcellular distribution. Nat Neurosci 12(7):888–896. doi:10.1038/nn.2340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khodosevich K, Jacobi E, Farrow P, Schulmann A, Rusu A, Zhang L, Sprengel R, Monyer H, von Engelhardt J (2014) Coexpressed auxiliary subunits exhibit distinct modulatory profiles on AMPA receptor function. Neuron 83(3):601–615. doi:10.1016/j.neuron.2014.07.004

    Article  CAS  PubMed  Google Scholar 

  • Kim HG, Connors BW (1993) Apical dendrites of the neocortex: correlation between sodium- and calcium-dependent spiking and pyramidal cell morphology. J Neurosci 13(12):5301–5311

    CAS  PubMed  Google Scholar 

  • Kim J, Wei DS, Hoffman DA (2005) Kv4 potassium channel subunits control action potential repolarization and frequency-dependent broadening in rat hippocampal CA1 pyramidal neurones. J Physiol 569(Pt 1):41–57. doi:jphysiol.2005.095042 [pii];10.1113/jphysiol.2005.095042 [doi]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Jung SC, Clemens AM, Petralia RS, Hoffman DA (2007) Regulation of dendritic excitability by activity-dependent trafficking of the A-type K+ channel subunit Kv4.2 in hippocampal neurons. Neuron 54(6):933–947. doi:S0896-6273(07)00383-2 [pii];10.1016/j.neuron.2007.05.026 [doi]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kirizs T, Kerti-Szigeti K, Lorincz A, Nusser Z (2014) Distinct axo-somato-dendritic distributions of three potassium channels in CA1 hippocampal pyramidal cells. Eur J Neurosci 39(11):1771–1783. doi:10.1111/ejn.12526

    Article  PubMed  PubMed Central  Google Scholar 

  • Kole MH, Stuart GJ (2008) Is action potential threshold lowest in the axon? Nat Neurosci 11(11):1253–1255. doi:10.1038/nn.2203

    Article  CAS  PubMed  Google Scholar 

  • Kole MH, Ilschner SU, Kampa BM, Williams SR, Ruben PC, Stuart GJ (2008) Action potential generation requires a high sodium channel density in the axon initial segment. Nat Neurosci 11(2):178–186. doi:10.1038/nn2040

    Article  CAS  PubMed  Google Scholar 

  • Kopec CD, Li B, Wei W, Boehm J, Malinow R (2006) Glutamate receptor exocytosis and spine enlargement during chemically induced long-term potentiation. J Neurosci 26(7):2000–2009. doi:10.1523/JNEUROSCI.3918-05.2006

    Article  CAS  PubMed  Google Scholar 

  • Kovalchuk Y, Eilers J, Lisman J, Konnerth A (2000) NMDA receptor-mediated subthreshold Ca(2+) signals in spines of hippocampal neurons. J Neurosci 20(5):1791–1799

    CAS  PubMed  Google Scholar 

  • Kullmann DM, Erdemli G, Asztely F (1996) LTP of AMPA and NMDA receptor-mediated signals: evidence for presynaptic expression and extrasynaptic glutamate spill-over. Neuron 17(3):461–474. doi:S0896-6273(00)80178-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Larkum ME, Zhu JJ, Sakmann B (1999a) A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398(6725):338–341. doi:10.1038/18686

    Article  CAS  PubMed  Google Scholar 

  • Larkum ME, Kaiser KM, Sakmann B (1999b) Calcium electrogenesis in distal apical dendrites of layer 5 pyramidal cells at a critical frequency of back-propagating action potentials. Proc Natl Acad Sci U S A 96(25):14600–14604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laudanski J, Torben-Nielsen B, Segev I, Shamma S (2014) Spatially distributed dendritic resonance selectively filters synaptic input. PLoS Comput Biol 10(8), e1003775. doi:10.1371/journal.pcbi.1003775

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee SJ, Escobedo-Lozoya Y, Szatmari EM, Yasuda R (2009) Activation of CaMKII in single dendritic spines during long-term potentiation. Nature 458(7236):299–304. doi:10.1038/nature07842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung LS, Yu HW (1998) Theta-frequency resonance in hippocampal CA1 neurons in vitro demonstrated by sinusoidal current injection. J Neurophysiol 79(3):1592–1596

    CAS  PubMed  Google Scholar 

  • Lewis AS, Schwartz E, Chan CS, Noam Y, Shin M, Wadman WJ, Surmeier DJ, Baram TZ, Macdonald RL, Chetkovich DM (2009) Alternatively spliced isoforms of TRIP8b differentially control h channel trafficking and function. J Neurosci 29(19):6250–6265. doi:29/19/6250 [pii];10.1523/JNEUROSCI.0856-09.2009 [doi]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis AS, Estep CM, Chetkovich DM (2010) The fast and slow ups and downs of HCN channel regulation. Channels (Austin) 4(3):215–231. doi:11630 [pii]

    Article  CAS  Google Scholar 

  • Lewis AS, Vaidya SP, Blaiss CA, Liu Z, Stoub TR, Brager DH, Chen X, Bender RA, Estep CM, Popov AB, Kang CE, Van Veldhoven PP, Bayliss DA, Nicholson DA, Powell CM, Johnston D, Chetkovich DM (2011) Deletion of the hyperpolarization-activated cyclic nucleotide-gated channel auxiliary subunit TRIP8b impairs hippocampal Ih localization and function and promotes antidepressant behavior in mice. J Neurosci 31(20):7424–7440. doi:31/20/7424 [pii];10.1523/JNEUROSCI.0936-11.2011 [doi]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, West JW, Numann R, Murphy BJ, Scheuer T, Catterall WA (1993) Convergent regulation of sodium channels by protein kinase C and cAMP-dependent protein kinase. Science 261(5127):1439–1442

    Article  CAS  PubMed  Google Scholar 

  • Lin MT, Lujan R, Watanabe M, Adelman JP, Maylie J (2008) SK2 channel plasticity contributes to LTP at Schaffer collateral-CA1 synapses. Nat Neurosci 11(2):170–177. doi:10.1038/nn2041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin L, Sun W, Throesch B, Kung F, Decoster JT, Berner CJ, Cheney RE, Rudy B, Hoffman DA (2013) DPP6 regulation of dendritic morphogenesis impacts hippocampal synaptic development. Nat Commun 4:2270. doi:ncomms3270 [pii];10.1038/ncomms3270 [doi]

    PubMed  PubMed Central  Google Scholar 

  • Lin L, Long LK, Hatch MM, Hoffman DA (2014) DPP6 domains responsible for its localization and function. J Biol Chem. doi:M114.578070 [pii];10.1074/jbc.M114.578070 [doi]

    Google Scholar 

  • Llinas R, Yarom Y (1986) Oscillatory properties of guinea-pig inferior olivary neurones and their pharmacological modulation: an in vitro study. J Physiol 376:163–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • London M, Häusser M (2005) Dendritic computation. Annu Rev Neurosci 28:503–532. doi:10.1146/annurev.neuro.28.061604.135703

    Article  CAS  PubMed  Google Scholar 

  • Lörincz A, Nusser Z (2010) Molecular identity of dendritic voltage-gated sodium channels. Science 328(5980):906–909. doi:10.1126/science.1187958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lorincz A, Notomi T, Tamas G, Shigemoto R, Nusser Z (2002) Polarized and compartment-dependent distribution of HCN1 in pyramidal cell dendrites. Nat Neurosci 5(11):1185–1193. doi:10.1038/nn962

    Article  PubMed  CAS  Google Scholar 

  • Losonczy A, Magee JC (2006) Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron 50(2):291–307. doi:10.1016/j.neuron.2006.03.016

    Article  CAS  PubMed  Google Scholar 

  • Losonczy A, Makara JK, Magee JC (2008) Compartmentalized dendritic plasticity and input feature storage in neurons. Nature 452(7186):436–441. doi:10.1038/nature06725

    Article  CAS  PubMed  Google Scholar 

  • Magee JC (1998) Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J Neurosci 18(19):7613–7624

    CAS  PubMed  Google Scholar 

  • Magee JC (1999) Dendritic Ih normalizes temporal summation in hippocampal CA1 neurons. Nat Neurosci 2(9):848. doi:10.1038/12229

    Article  CAS  PubMed  Google Scholar 

  • Magee JC (2000) Dendritic integration of excitatory synaptic input. Nat Rev Neurosci 1(3):181–190. doi:10.1038/35044552

    Article  CAS  PubMed  Google Scholar 

  • Magee JC (2008) Dendritic voltage-gated ion channels. In: Stuart G, Spruston N, Hдusser M (eds) Dendrites, 2nd edn. Oxford University Press, New York, pp 225–250

    Google Scholar 

  • Magee JC, Carruth M (1999) Dendritic voltage-gated ion channels regulate the action potential firing mode of hippocampal CA1 pyramidal neurons. J Neurophysiol 82(4):1895–1901

    CAS  PubMed  Google Scholar 

  • Magee JC, Cook EP (2000) Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nat Neurosci 3(9):895–903. doi:10.1038/78800

    Article  CAS  PubMed  Google Scholar 

  • Magee JC, Johnston D (1995a) Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. J Physiol 487(Pt 1):67–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magee JC, Johnston D (1995b) Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science 268(5208):301–304

    Article  CAS  PubMed  Google Scholar 

  • Magee JC, Johnston D (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275(5297):209–213

    Article  CAS  PubMed  Google Scholar 

  • Magee JC, Christofi G, Miyakawa H, Christie B, Lasser-Ross N, Johnston D (1995) Subthreshold synaptic activation of voltage-gated Ca2+ channels mediates a localized Ca2+ influx into the dendrites of hippocampal pyramidal neurons. J Neurophysiol 74(3):1335–1342

    CAS  PubMed  Google Scholar 

  • Mainen ZF, Joerges J, Huguenard JR, Sejnowski TJ (1995) A model of spike initiation in neocortical pyramidal neurons. Neuron 15(6):1427–1439

    Article  CAS  PubMed  Google Scholar 

  • Mainen ZF, Carnevale NT, Zador AM, Claiborne BJ, Brown TH (1996) Electrotonic architecture of hippocampal CA1 pyramidal neurons based on three-dimensional reconstructions. J Neurophysiol 76(3):1904–1923

    CAS  PubMed  Google Scholar 

  • Makara JK, Losonczy A, Wen Q, Magee JC (2009) Experience-dependent compartmentalized dendritic plasticity in rat hippocampal CA1 pyramidal neurons. Nat Neurosci 12(12):1485–1487. doi:10.1038/nn.2428

    Article  CAS  PubMed  Google Scholar 

  • Makino H, Malinow R (2009) AMPA receptor incorporation into synapses during LTP: the role of lateral movement and exocytosis. Neuron 64(3):381–390. doi:10.1016/j.neuron.2009.08.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maletic-Savatic M, Lenn NJ, Trimmer JS (1995) Differential spatiotemporal expression of K+ channel polypeptides in rat hippocampal neurons developing in situ and in vitro. J Neurosci 15(5 Pt 2):3840–3851

    CAS  PubMed  Google Scholar 

  • Marban E, Yamagishi T, Tomaselli GF (1998) Structure and function of voltage-gated sodium channels. J Physiol 508(Pt 3):647–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marionneau C, Carrasquillo Y, Norris AJ, Townsend RR, Isom LL, Link AJ, Nerbonne JM (2012) The sodium channel accessory subunit Navbeta1 regulates neuronal excitability through modulation of repolarizing voltage-gated K(+) channels. J Neurosci 32(17):5716–5727. doi:10.1523/JNEUROSCI.6450-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martel MA, Ryan TJ, Bell KF, Fowler JH, McMahon A, Al-Mubarak B, Komiyama NH, Horsburgh K, Kind PC, Grant SG, Wyllie DJ, Hardingham GE (2012) The subtype of GluN2 C-terminal domain determines the response to excitotoxic insults. Neuron 74(3):543–556. doi:10.1016/j.neuron.2012.03.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martina M, Vida I, Jonas P (2000) Distal initiation and active propagation of action potentials in interneuron dendrites. Science 287(5451):295–300

    Article  CAS  PubMed  Google Scholar 

  • Mauro A, Conti F, Dodge F, Schor R (1970) Subthreshold behavior and phenomenological impedance of the squid giant axon. J Gen Phys 55(4):497–523

    Article  CAS  Google Scholar 

  • McKay BE, McRory JE, Molineux ML, Hamid J, Snutch TP, Zamponi GW, Turner RW (2006) Ca(V)3 T-type calcium channel isoforms differentially distribute to somatic and dendritic compartments in rat central neurons. Eur J Neurosci 24(9):2581–2594. doi:10.1111/j.1460-9568.2006.05136.x

    Article  PubMed  Google Scholar 

  • Megias M, Emri Z, Freund TF, Gulyas AI (2001) Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102(3):527–540. doi:S0306-4522(00)00496-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Melyan Z, Wheal HV, Lancaster B (2002) Metabotropic-mediated kainate receptor regulation of IsAHP and excitability in pyramidal cells. Neuron 34(1):107–114

    Article  CAS  PubMed  Google Scholar 

  • Migliore M, Shepherd GM (2002) Emerging rules for the distributions of active dendritic conductances. Nat Rev Neurosci 3(5):362–370. doi:10.1038/nrn810

    Article  CAS  PubMed  Google Scholar 

  • Miller OH, Yang L, Wang CC, Hargroder EA, Zhang Y, Delpire E, Hall BJ (2014) GluN2B-containing NMDA receptors regulate depression-like behavior and are critical for the rapid antidepressant actions of ketamine. eLife 3, e03581. doi:10.7554/eLife.03581

    PubMed  PubMed Central  Google Scholar 

  • Mills LR, Niesen CE, So AP, Carlen PL, Spigelman I, Jones OT (1994) N-type Ca2+ channels are located on somata, dendrites, and a subpopulation of dendritic spines on live hippocampal pyramidal neurons. J Neurosci 14(11 Pt 2):6815–6824

    CAS  PubMed  Google Scholar 

  • Milstein AD, Zhou W, Karimzadegan S, Bredt DS, Nicoll RA (2007) TARP subtypes differentially and dose-dependently control synaptic AMPA receptor gating. Neuron 55(6):905–918. doi:10.1016/j.neuron.2007.08.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyakawa H, Ross WN, Jaffe D, Callaway JC, Lasser-Ross N, Lisman JE, Johnston D (1992) Synaptically activated increases in Ca2+ concentration in hippocampal CA1 pyramidal cells are primarily due to voltage-gated Ca2+ channels. Neuron 9(6):1163–1173

    Article  CAS  PubMed  Google Scholar 

  • Müller C, Beck H, Coulter D, Remy S (2012) Inhibitory control of linear and supralinear dendritic excitation in CA1 pyramidal neurons. Neuron 75(5):851–864. doi:10.1016/j.neuron.2012.06.025

    Article  PubMed  CAS  Google Scholar 

  • Murphy BJ, Rossie S, De Jongh KS, Catterall WA (1993) Identification of the sites of selective phosphorylation and dephosphorylation of the rat brain Na+ channel alpha subunit by cAMP-dependent protein kinase and phosphoprotein phosphatases. J Biol Chem 268(36):27355–27362

    CAS  PubMed  Google Scholar 

  • Nadal MS, Ozaita A, Amarillo Y, de Vega-Saenz ME, Ma Y, Mo W, Goldberg EM, Misumi Y, Ikehara Y, Neubert TA, Rudy B (2003) The CD26-related dipeptidyl aminopeptidase-like protein DPPX is a critical component of neuronal A-type K+ channels. Neuron 37(3):449–461. doi:S0896627302011856 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Narayanan R, Johnston D (2007) Long-term potentiation in rat hippocampal neurons is accompanied by spatially widespread changes in intrinsic oscillatory dynamics and excitability. Neuron 56:1061–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ngo-Anh TJ, Bloodgood BL, Lin M, Sabatini BL, Maylie J, Adelman JP (2005) SK channels and NMDA receptors form a Ca2+ -mediated feedback loop in dendritic spines. Nat Neurosci 8(5):642–649

    Article  CAS  PubMed  Google Scholar 

  • Niswender CM, Conn PJ (2010) Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 50:295–322. doi:10.1146/annurev.pharmtox.011008.145533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Notomi T, Shigemoto R (2004) Immunohistochemical localization of Ih channel subunits, HCN1-4, in the rat brain. J Comp Neurol 471(3):241–276. doi:10.1002/cne.11039

    Article  CAS  PubMed  Google Scholar 

  • Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307(5950):462–465

    Article  CAS  PubMed  Google Scholar 

  • Numann R, Catterall WA, Scheuer T (1991) Functional modulation of brain sodium channels by protein kinase C phosphorylation. Science 254(5028):115–118

    Article  CAS  PubMed  Google Scholar 

  • Nuriya M, Jiang J, Nemet B, Eisenthal KB, Yuste R (2006) Imaging membrane potential in dendritic spines. Proc Natl Acad Sci U S A 103(3):786–790. doi:10.1073/pnas.0510092103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panatier A, Theodosis DT, Mothet JP, Touquet B, Pollegioni L, Poulain DA, Oliet SH (2006) Glia-derived D-serine controls NMDA receptor activity and synaptic memory. Cell 125(4):775–784. doi:10.1016/j.cell.2006.02.051

    Article  CAS  PubMed  Google Scholar 

  • Paoletti P, Bellone C, Zhou Q (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 14(6):383–400. doi:10.1038/nrn3504

    Article  CAS  PubMed  Google Scholar 

  • Pape HC (1996) Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Annu Rev Physiol 58:299–327. doi:10.1146/annurev.ph.58.030196.001503

    Article  CAS  PubMed  Google Scholar 

  • Papouin T, Oliet SH (2014) Organization, control and function of extrasynaptic NMDA receptors. Philos Trans R Soc Lond B Biol Sci 369(1654):20130601. doi:10.1098/rstb.2013.0601

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG (1994) Glutamate-mediated astrocyte-neuron signalling. Nature 369(6483):744–747. doi:10.1038/369744a0

    Article  CAS  PubMed  Google Scholar 

  • Parsons MP, Raymond LA (2014) Extrasynaptic NMDA receptor involvement in central nervous system disorders. Neuron 82(2):279–293. doi:10.1016/j.neuron.2014.03.030

    Article  CAS  PubMed  Google Scholar 

  • Patton DE, Isom LL, Catterall WA, Goldin AL (1994) The adult rat brain beta 1 subunit modifies activation and inactivation gating of multiple sodium channel alpha subunits. J Biol Chem 269(26):17649–17655

    CAS  PubMed  Google Scholar 

  • Petrini EM, Barberis A (2014) Diffusion dynamics of synaptic molecules during inhibitory postsynaptic plasticity. Front Cell Neurosci 8:300. doi:10.3389/fncel.2014.00300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petrini EM, Lu J, Cognet L, Lounis B, Ehlers MD, Choquet D (2009) Endocytic trafficking and recycling maintain a pool of mobile surface AMPA receptors required for synaptic potentiation. Neuron 63(1):92–105. doi:S0896-6273(09)00400-0 [pii] 10.1016/j.neuron.2009.05.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrini EM, Ravasenga T, Hausrat TJ, Iurilli G, Olcese U, Racine V, Sibarita JB, Jacob TC, Moss SJ, Benfenati F, Medini P, Kneussel M, Barberis A (2014) Synaptic recruitment of gephyrin regulates surface GABAA receptor dynamics for the expression of inhibitory LTP. Nat Commun 5:3921. doi:10.1038/ncomms4921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poirazi P, Mel BW (2001) Impact of active dendrites and structural plasticity on the memory capacity of neural tissue. Neuron 29(3):779–796

    Article  CAS  PubMed  Google Scholar 

  • Priel A, Kolleker A, Ayalon G, Gillor M, Osten P, Stern-Bach Y (2005) Stargazin reduces desensitization and slows deactivation of the AMPA-type glutamate receptors. J Neurosci 25(10):2682–2686. doi:25/10/2682 [pii] 10.1523/JNEUROSCI.4834-04.2005

    Article  CAS  PubMed  Google Scholar 

  • Puil E, Gimbarzevsky B, Miura RM (1986) Quantification of membrane properties of trigeminal root ganglion neurons in guinea pigs. J Neurophysiol 55(5):995–1016

    CAS  PubMed  Google Scholar 

  • Puil E, Meiri H, Yarom Y (1994) Resonant behavior and frequency preferences of thalamic neurons. J Neurophysiol 71(2):575–582

    CAS  PubMed  Google Scholar 

  • Racz B, Blanpied TA, Ehlers MD, Weinberg RJ (2004) Lateral organization of endocytic machinery in dendritic spines. Nat Neurosci 7(9):917–918. doi:10.1038/nn1303 nn1303 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Rall W (1962) Theory of physiological properties of dendrites. Ann N Y Acad Sci 96:1071–1092

    Article  CAS  PubMed  Google Scholar 

  • Ratcliffe CF, Qu Y, McCormick KA, Tibbs VC, Dixon JE, Scheuer T, Catterall WA (2000) A sodium channel signaling complex: modulation by associated receptor protein tyrosine phosphatase beta. Nat Neurosci 3(5):437–444. doi:10.1038/74805

    Article  CAS  PubMed  Google Scholar 

  • Regehr WG, Connor JA, Tank DW (1989) Optical imaging of calcium accumulation in hippocampal pyramidal cells during synaptic activation. Nature 341(6242):533–536. doi:10.1038/341533a0

    Article  CAS  PubMed  Google Scholar 

  • Remy S, Csicsvari J, Beck H (2009) Activity-dependent control of neuronal output by local and global dendritic spike attenuation. Neuron 61(6):906–916. doi:10.1016/j.neuron.2009.01.032

    Article  CAS  PubMed  Google Scholar 

  • Reyes A (2001) Influence of dendritic conductances on the input-output properties of neurons. Annu Rev Neurosci 24:653–675. doi:10.1146/annurev.neuro.24.1.653

    Article  CAS  PubMed  Google Scholar 

  • Rhodes KJ, Carroll KI, Sung MA, Doliveira LC, Monaghan MM, Burke SL, Strassle BW, Buchwalder L, Menegola M, Cao J, An WF, Trimmer JS (2004) KChIPs and Kv4 alpha subunits as integral components of A-type potassium channels in mammalian brain. J Neurosci 24(36):7903–7915. doi:10.1523/JNEUROSCI.0776-04.2004 [doi];24/36/7903 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Rogerson T, Cai DJ, Frank A, Sano Y, Shobe J, Lopez-Aranda MF, Silva AJ (2014) Synaptic tagging during memory allocation. Nat Rev Neurosci 15(3):157–169. doi:10.1038/nrn3667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose CR, Konnerth A (2001) NMDA receptor-mediated Na+ signals in spines and dendrites. J Neurosci 21(12):4207–4214

    CAS  PubMed  Google Scholar 

  • Rouach N, Byrd K, Petralia RS, Elias GM, Adesnik H, Tomita S, Karimzadegan S, Kealey C, Bredt DS, Nicoll RA (2005) TARP gamma-8 controls hippocampal AMPA receptor number, distribution and synaptic plasticity. Nat Neurosci 8(11):1525–1533, Epub 2005 Oct 1529

    Article  CAS  PubMed  Google Scholar 

  • Rudy B (1978) Slow inactivation of the sodium conductance in squid giant axons. Pronase resistance. J Physiol 283:1–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudy B (1988) Diversity and ubiquity of K channels. Neuroscience 25(3):729–749

    Article  CAS  PubMed  Google Scholar 

  • Sabatini BL, Svoboda K (2000) Analysis of calcium channels in single spines using optical fluctuation analysis. Nature 408(6812):589–593. doi:10.1038/35046076

    Article  CAS  PubMed  Google Scholar 

  • Sah P (1996) Ca(2+)-activated K+ currents in neurones: types, physiological roles and modulation. Trends Neurosci 19(4):150–154. doi:S0166-2236(96)80026-9 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Sah P, Faber ES (2002) Channels underlying neuronal calcium-activated potassium currents. Prog Neurobiol 66(5):345–353. doi:S0301008202000047 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Sailer CA, Kaufmann WA, Marksteiner J, Knaus HG (2004) Comparative immunohistochemical distribution of three small-conductance Ca2+ -activated potassium channel subunits, SK1, SK2, and SK3 in mouse brain. Mol Cell Neurosci 26(3):458–469. doi:10.1016/j.mcn.2004.03.002

    Article  CAS  PubMed  Google Scholar 

  • Santoro B, Piskorowski RA, Pian P, Hu L, Liu H, Siegelbaum SA (2009) TRIP8b splice variants form a family of auxiliary subunits that regulate gating and trafficking of HCN channels in the brain. Neuron 62(6):802–813. doi:S0896-6273(09)00360-2 [pii];10.1016/j.neuron.2009.05.009 [doi]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanz-Clemente A, Nicoll RA, Roche KW (2013) Diversity in NMDA receptor composition: many regulators, many consequences. Neuroscientist Rev J Bringing Neurobiol Neurol Psychiatry 19(1):62–75. doi:10.1177/1073858411435129

    CAS  Google Scholar 

  • Scheuer T (1994) Structure and function of voltage-gated sodium channels: regulation by phosphorylation. Biochem Soc Trans 22(2):479–482

    Article  CAS  PubMed  Google Scholar 

  • Schiller J, Major G, Koester HJ, Schiller Y (2000) NMDA spikes in basal dendrites of cortical pyramidal neurons. Nature 404(6775):285–289. doi:10.1038/35005094

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Salzmann C, Li L, Bischofberger J (2014) Functional properties of extrasynaptic AMPA and NMDA receptors during postnatal hippocampal neurogenesis. J Physiol 592(Pt 1):125–140. doi:10.1113/jphysiol.2013.267203

    Article  CAS  PubMed  Google Scholar 

  • Schrader LA, Anderson AE, Varga AW, Levy M, Sweatt JD (2002) The other half of Hebb: K+ channels and the regulation of neuronal excitability in the hippocampus. Mol Neurobiol 25(1):51–66. doi:MN:25:1:051 [pii];10.1385/MN:25:1:051 [doi]

    Article  CAS  PubMed  Google Scholar 

  • Schwenk J, Harmel N, Zolles G, Bildl W, Kulik A, Heimrich B, Chisaka O, Jonas P, Schulte U, Fakler B, Klocker N (2009) Functional proteomics identify cornichon proteins as auxiliary subunits of AMPA receptors. Science 323(5919):1313–1319. doi:323/5919/1313 [pii] 10.1126/science.1167852

    Article  CAS  PubMed  Google Scholar 

  • Schwindt PC, Crill WE (1995) Amplification of synaptic current by persistent sodium conductance in apical dendrite of neocortical neurons. J Neurophysiol 74(5):2220–2224

    CAS  PubMed  Google Scholar 

  • Scimemi A (2014) Plasticity of GABA transporters: an unconventional route to shape inhibitory synaptic transmission. Front Cell Neurosci 8:128. doi:10.3389/fncel.2014.00128

    PubMed  PubMed Central  Google Scholar 

  • Serodio P, de Vega-Saenz ME, Rudy B (1996) Cloning of a novel component of A-type K+ channels operating at subthreshold potentials with unique expression in heart and brain. J Neurophysiol 75(5):2174–2179

    CAS  PubMed  Google Scholar 

  • Shah MM, Hammond RS, Hoffman DA (2010) Dendritic ion channel trafficking and plasticity. Trends Neurosci 33(7):307–316. doi:S0166-2236(10)00036-6 [pii];10.1016/j.tins.2010.03.002 [doi]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao D, Okuse K, Djamgoz MB (2009) Protein-protein interactions involving voltage-gated sodium channels: post-translational regulation, intracellular trafficking and functional expression. Int J Biochem Cell Biol 41(7):1471–1481. doi:10.1016/j.biocel.2009.01.016

    Article  CAS  PubMed  Google Scholar 

  • Sheng M, Tsaur ML, Jan YN, Jan LY (1992) Subcellular segregation of two A-type K+ channel proteins in rat central neurons. Neuron 9(2):271–284. doi:0896-6273(92)90166-B [pii]

    Article  CAS  PubMed  Google Scholar 

  • Shipman SL, Herring BE, Suh YH, Roche KW, Nicoll RA (2013) Distance-dependent scaling of AMPARs is cell-autonomous and GluA2 dependent. J Neurosci 33(33):13312–13319. doi:10.1523/JNEUROSCI.0678-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shipton OA, Paulsen O (2014) GluN2A and GluN2B subunit-containing NMDA receptors in hippocampal plasticity. Philos Trans R Soc Lond B Biol Sci 369(1633):20130163. doi:10.1098/rstb.2013.0163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sjostrom PJ, Rancz EA, Roth A, Hausser M (2008) Dendritic excitability and synaptic plasticity. Physiol Rev 88(2):769–840. doi:10.1152/physrev.00016.2007

    Article  CAS  PubMed  Google Scholar 

  • Smith RD, Goldin AL (1997) Phosphorylation at a single site in the rat brain sodium channel is necessary and sufficient for current reduction by protein kinase A. J Neurosci 17(16):6086–6093

    CAS  PubMed  Google Scholar 

  • Soltesz I, Deschenes M (1993) Low- and high-frequency membrane potential oscillations during theta activity in CA1 and CA3 pyramidal neurons of the rat hippocampus under ketamine-xylazine anesthesia. J Neurophysiol 70(1):97–116

    CAS  PubMed  Google Scholar 

  • Song W, Chattipakorn SC, McMahon LL (2006) Glycine-gated chloride channels depress synaptic transmission in rat hippocampus. J Neurophysiol 95(4):2366–2379. doi:10.1152/jn.00386.2005

    Article  CAS  PubMed  Google Scholar 

  • Song I, Volynski K, Brenner T, Ushkaryov Y, Walker M, Semyanov A (2013) Different transporter systems regulate extracellular GABA from vesicular and non-vesicular sources. Front Cell Neurosci 7:23. doi:10.3389/fncel.2013.00023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9(3):206–221. doi:10.1038/nrn2286

    Article  CAS  PubMed  Google Scholar 

  • Spruston N, Schiller Y, Stuart G, Sakmann B (1995) Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science 268(5208):297–300

    Article  CAS  PubMed  Google Scholar 

  • Stocker M, Pedarzani P (2000) Differential distribution of three Ca(2+)-activated K(+) channel subunits, SK1, SK2, and SK3, in the adult rat central nervous system. Mol Cell Neurosci 15(5):476–493. doi:10.1006/mcne.2000.0842

    Article  CAS  PubMed  Google Scholar 

  • Storm JF (1990) Potassium currents in hippocampal pyramidal cells. Prog Brain Res 83:161–187

    Article  CAS  PubMed  Google Scholar 

  • Straub C, Hunt DL, Yamasaki M, Kim KS, Watanabe M, Castillo PE, Tomita S (2011) Distinct functions of kainate receptors in the brain are determined by the auxiliary subunit Neto1. Nat Neurosci 14(7):866–873. doi:10.1038/nn.2837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuart GJ, Hausser M (2001) Dendritic coincidence detection of EPSPs and action potentials. Nat Neurosci 4(1):63–71. doi:10.1038/82910

    Article  CAS  PubMed  Google Scholar 

  • Stuart GJ, Sakmann B (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367(6458):69–72. doi:10.1038/367069a0

    Article  CAS  PubMed  Google Scholar 

  • Stuart G, Schiller J, Sakmann B (1997a) Action potential initiation and propagation in rat neocortical pyramidal neurons. J Physiol 505(Pt 3):617–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuart G, Spruston N, Sakmann B, Hausser M (1997b) Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends Neurosci 20(3):125–131

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Maffie JK, Lin L, Petralia RS, Rudy B, Hoffman DA (2011) DPP6 establishes the A-type K(+) current gradient critical for the regulation of dendritic excitability in CA1 hippocampal neurons. Neuron 71(6):1102–1115. doi:S0896-6273(11)00722-7 [pii];10.1016/j.neuron.2011.08.008 [doi]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teles-Grilo Ruivo LM, Mellor JR (2013) Cholinergic modulation of hippocampal network function. Front Synaptic Neurosci 5:2. doi:10.3389/fnsyn.2013.00002

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomsen MB, Foster E, Nguyen KH, Sosunov EA (2009) Transcriptional and electrophysiological consequences of KChIP2-mediated regulation of CaV1.2. Channels (Austin) 3(5):308–310. doi:9560 [pii]

    Article  CAS  Google Scholar 

  • Thomson AM, Bannister AP, Hughes DI, Pawelzik H (2000) Differential sensitivity to Zolpidem of IPSPs activated by morphologically identified CA1 interneurons in slices of rat hippocampus. Eur J Neurosci 12(2):425–436

    Article  CAS  PubMed  Google Scholar 

  • Tomita S, Shenoy A, Fukata Y, Nicoll RA, Bredt DS (2007) Stargazin interacts functionally with the AMPA receptor glutamate-binding module. Neuropharmacology 52(1):87–91. doi:10.1016/j.neuropharm.2006.07.012

    Article  CAS  PubMed  Google Scholar 

  • Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62(3):405–496. doi:10.1124/pr.109.002451 62/3/405 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trimmer JS, Rhodes KJ (2004) Localization of voltage-gated ion channels in mammalian brain. Annu Rev Physiol 66:477–519. doi:10.1146/annurev.physiol.66.032102.113328

    Article  CAS  PubMed  Google Scholar 

  • Tsay D, Yuste R (2002) Role of dendritic spines in action potential backpropagation: a numerical simulation study. J Neurophysiol 88(5):2834–2845. doi:10.1152/jn.00781.2001

    Article  CAS  PubMed  Google Scholar 

  • Turner RW, Zamponi GW (2014) T-type channels buddy up. Pflugers Arch - Eur J Physiol 466(4):661–675. doi:10.1007/s00424-013-1434-6

    Article  CAS  Google Scholar 

  • Turner RW, Meyers DE, Richardson TL, Barker JL (1991) The site for initiation of action potential discharge over the somatodendritic axis of rat hippocampal CA1 pyramidal neurons. J Neurosci 11(7):2270–2280

    CAS  PubMed  Google Scholar 

  • Vaidya SP, Johnston D (2013) Temporal synchrony and gamma-to-theta power conversion in the dendrites of CA1 pyramidal neurons. Nat Neurosci 16(12):1812–1820. doi:10.1038/nn.3562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Zundert B, Yoshii A, Constantine-Paton M (2004) Receptor compartmentalization and trafficking at glutamate synapses: a developmental proposal. Trends Neurosci 27(7):428–437. doi:10.1016/j.tins.2004.05.010

    Article  PubMed  Google Scholar 

  • Varga AW, Anderson AE, Adams JP, Vogel H, Sweatt JD (2000) Input-specific immunolocalization of differentially phosphorylated Kv4.2 in the mouse brain. Learn Mem 7(5):321–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varga AW, Yuan LL, Anderson AE, Schrader LA, Wu GY, Gatchel JR, Johnston D, Sweatt JD (2004) Calcium-calmodulin-dependent kinase II modulates Kv4.2 channel expression and upregulates neuronal A-type potassium currents. J Neurosci 24(14):3643–3654. doi:10.1523/JNEUROSCI.0154-04.2004 [doi];24/14/3643 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Vizi ES, Fekete A, Karoly R, Mike A (2010) Non-synaptic receptors and transporters involved in brain functions and targets of drug treatment. Br J Pharmacol 160(4):785–809. doi:10.1111/j.1476-5381.2009.00624.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Engelhardt J, Mack V, Sprengel R, Kavenstock N, Li KW, Stern-Bach Y, Smit AB, Seeburg PH, Monyer H (2010) CKAMP44: a brain-specific protein attenuating short-term synaptic plasticity in the dentate gyrus. Science 327(5972):1518–1522. doi:10.1126/science.1184178

    Article  CAS  Google Scholar 

  • Wahl-Schott C, Biel M (2009) HCN channels: structure, cellular regulation and physiological function. Cell Mol Life Sci 66(3):470–494. doi:10.1007/s00018-008-8525-0

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Xu NL, Wu CP, Duan S, Poo MM (2003) Bidirectional changes in spatial dendritic integration accompanying long-term synaptic modifications. Neuron 37(3):463–472. doi:S0896627302011893 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Ramos BP, Paspalas CD, Shu Y, Simen A, Duque A, Vijayraghavan S, Brennan A, Dudley A, Nou E, Mazer JA, McCormick DA, Arnsten AF (2007) Alpha2A-adrenoceptors strengthen working memory networks by inhibiting cAMP-HCN channel signaling in prefrontal cortex. Cell 129(2):397–410. doi:S0092-8674(07)00344-3 [pii];10.1016/j.cell.2007.03.015 [doi]

    Article  CAS  PubMed  Google Scholar 

  • Wang HG, He XP, Li Q, Madison RD, Moore SD, McNamara JO, Pitt GS (2013) The auxiliary subunit KChIP2 is an essential regulator of homeostatic excitability. J Biol Chem 288(19):13258–13268. doi:M112.434548 [pii];10.1074/jbc.M112.434548 [doi]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen Q, Chklovskii DB (2008) A cost-benefit analysis of neuronal morphology. J Neurophysiol 99(5):2320–2328. doi:10.1152/jn.00280.2007

    Article  PubMed  Google Scholar 

  • Wen Q, Stepanyants A, Elston GN, Grosberg AY, Chklovskii DB (2009) Maximization of the connectivity repertoire as a statistical principle governing the shapes of dendritic arbors. Proc Natl Acad Sci U S A 106(30):12536–12541. doi:10.1073/pnas.0901530106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West JW, Numann R, Murphy BJ, Scheuer T, Catterall WA (1991) A phosphorylation site in the Na+ channel required for modulation by protein kinase C. Science 254(5033):866–868

    Article  CAS  PubMed  Google Scholar 

  • Westenbroek RE, Merrick DK, Catterall WA (1989) Differential subcellular localization of the RI and RII Na+ channel subtypes in central neurons. Neuron 3(6):695–704

    Article  CAS  PubMed  Google Scholar 

  • Westenbroek RE, Ahlijanian MK, Catterall WA (1990) Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons. Nature 347(6290):281–284. doi:10.1038/347281a0

    Article  CAS  PubMed  Google Scholar 

  • Westenbroek RE, Hell JW, Warner C, Dubel SJ, Snutch TP, Catterall WA (1992) Biochemical properties and subcellular distribution of an N-type calcium channel alpha 1 subunit. Neuron 9(6):1099–1115

    Article  CAS  PubMed  Google Scholar 

  • Westenbroek RE, Sakurai T, Elliott EM, Hell JW, Starr TV, Snutch TP, Catterall WA (1995) Immunochemical identification and subcellular distribution of the alpha 1A subunits of brain calcium channels. J Neurosci 15(10):6403–6418

    CAS  PubMed  Google Scholar 

  • Wheeler DG, Groth RD, Ma H, Barrett CF, Owen SF, Safa P, Tsien RW (2012) Ca(V)1 and Ca(V)2 channels engage distinct modes of Ca(2+) signaling to control CREB-dependent gene expression. Cell 149(5):1112–1124. doi:10.1016/j.cell.2012.03.041

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Whitaker WR, Faull RL, Waldvogel HJ, Plumpton CJ, Emson PC, Clare JJ (2001) Comparative distribution of voltage-gated sodium channel proteins in human brain. Brain Res Mol Brain Res 88(1–2):37–53

    Article  CAS  PubMed  Google Scholar 

  • Williams SR, Stuart GJ (2000a) Backpropagation of physiological spike trains in neocortical pyramidal neurons: implications for temporal coding in dendrites. J Neurosci 20(22):8238–8246

    CAS  PubMed  Google Scholar 

  • Williams SR, Stuart GJ (2000b) Action potential backpropagation and somato-dendritic distribution of ion channels in thalamocortical neurons. J Neurosci 20(4):1307–1317

    CAS  PubMed  Google Scholar 

  • Williams SR, Stuart GJ (2003) Role of dendritic synapse location in the control of action potential output. Trends Neurosci 26(3):147–154. doi:10.1016/S0166-2236(03)00035-3

    Article  CAS  PubMed  Google Scholar 

  • Wood JN, Baker M (2001) Voltage-gated sodium channels. Curr Opin Pharmacol 1(1):17–21

    Article  CAS  PubMed  Google Scholar 

  • Wu YW, Grebenyuk S, McHugh TJ, Rusakov DA, Semyanov A (2012) Backpropagating action potentials enable detection of extrasynaptic glutamate by NMDA receptors. Cell Rep 1(5):495–505. doi:10.1016/j.celrep.2012.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasuda R, Sabatini BL, Svoboda K (2003) Plasticity of calcium channels in dendritic spines. Nat Neurosci 6(9):948–955. doi:10.1038/nn1112 nn1112 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Ylinen A, Soltesz I, Bragin A, Penttonen M, Sik A, Buzsaki G (1995) Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells, and basket cells. Hippocampus 5(1):78–90. doi:10.1002/hipo.450050110

    Article  CAS  PubMed  Google Scholar 

  • Yuan LL, Adams JP, Swank M, Sweatt JD, Johnston D (2002) Protein kinase modulation of dendritic K+ channels in hippocampus involves a mitogen-activated protein kinase pathway. J Neurosci 22(12):4860–4868. doi:22/12/4860 [pii]

    CAS  PubMed  Google Scholar 

  • Yuste R, Denk W (1995) Dendritic spines as basic functional units of neuronal integration. Nature 375(6533):682–684. doi:10.1038/375682a0

    Article  CAS  PubMed  Google Scholar 

  • Yuste R, Tank DW (1996) Dendritic integration in mammalian neurons, a century after Cajal. Neuron 16(4):701–716

    Article  CAS  PubMed  Google Scholar 

  • Yuste R, Majewska A, Cash SS, Denk W (1999) Mechanisms of calcium influx into hippocampal spines: heterogeneity among spines, coincidence detection by NMDA receptors, and optical quantal analysis. J Neurosci Off J Soc Neurosci 19(6):1976–1987

    CAS  Google Scholar 

  • Zagha E, Ozaita A, Chang SY, Nadal MS, Lin U, Saganich MJ, McCormack T, Akinsanya KO, Qi SY, Rudy B (2005) DPP10 modulates Kv4-mediated A-type potassium channels. J Biol Chem 280(19):18853–18861. doi:M410613200 [pii];10.1074/jbc.M410613200 [doi]

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Su P, Liang P, Liu T, Liu X, Liu XY, Zhang B, Han T, Zhu YB, Yin DM, Li J, Zhou Z, Wang KW, Wang Y (2010) The DREAM protein negatively regulates the NMDA receptor through interaction with the NR1 subunit. J Neurosci 30(22):7575–7586. doi:30/22/7575 [pii];10.1523/JNEUROSCI.1312-10.2010 [doi]

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Devi SP, Tomita S, Howe JR (2014) Auxiliary proteins promote modal gating of AMPA- and kainate-type glutamate receptors. Eur J Neurosci 39(7):1138–1147. doi:10.1111/ejn.12519

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhuchkova E, Remme MW, Schreiber S (2013) Somatic versus dendritic resonance: differential filtering of inputs through non-uniform distributions of active conductances. PLoS ONE 8(11), e78908. doi:10.1371/journal.pone.0078908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zolles G, Wenzel D, Bildl W, Schulte U, Hofmann A, Muller CS, Thumfart JO, Vlachos A, Deller T, Pfeifer A, Fleischmann BK, Roeper J, Fakler B, Klocker N (2009) Association with the auxiliary subunit PEX5R/Trip8b controls responsiveness of HCN channels to cAMP and adrenergic stimulation. Neuron 62(6):814–825. doi:S0896-6273(09)00359-6 [pii];10.1016/j.neuron.2009.05.008 [doi]

    Article  CAS  PubMed  Google Scholar 

  • Zona C, Eusebi F, Miledi R (1990) Glycosylation is required for maintenance of functional voltage-activated channels in growing neocortical neurons of the rat. Proc R Soc Lond Ser B Containing Pap Biol Charact R Soc 239(1295):119–127

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arthur Bikbaev or Martin Heine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Bikbaev, A., Duménieu, M., Lopez-Rojas, J., Heine, M. (2016). Localising Receptors and Channels Across the Dendritic Arbour. In: Emoto, K., Wong, R., Huang, E., Hoogenraad, C. (eds) Dendrites. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56050-0_16

Download citation

Publish with us

Policies and ethics