Skip to main content

Rosacea in Skin Innate Immunity

  • Chapter
  • First Online:
Immunology of the Skin
  • 2190 Accesses

Abstract

Rosacea is a common and chronic inflammatory skin disease most frequently seen in groups of genetically related individuals. Although the symptoms of rosacea are heterogeneous, they are all related by the presence of characteristic facial or ocular inflammation involving both the vascular and tissue stroma. Until recently, the pathophysiology of this disease was limited to descriptions of a wide variety of factors that exacerbate or improve disease. Lesional skins of rosacea increase the susceptibility to environmental stimuli through TLR2 and consequently have aberrant cathelicidin antimicrobial peptides along with the increase of kallikrein 5, the cathelicidin-processing enzyme in epidermis. The molecular studies show a common link between the triggers of rosacea and the cellular response, and these observations suggest that an altered innate immune response is involved in disease pathogenesis. Understanding rosacea as a disorder of innate immunity explains the benefits of current treatments and suggests new therapeutic strategies for alleviating this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acharya MR, Venitz J, Figg WD et al (2004) Chemically modified tetracyclines as inhibitors of matrix metalloproteinases. Drug Resist Updat 7:195–208

    Article  PubMed  Google Scholar 

  2. Afonso AA, Sobrin L, Monroy DC et al (1999) Tear fluid gelatinase B activity correlates with IL-1{alpha} concentration and fluorescein clearance in ocular rosacea. Invest Ophthalmol Vis Sci 40:2506–2512

    CAS  PubMed  Google Scholar 

  3. Akamatsu H, Komura J, Asada Y et al (1991) Inhibitory effect of azelaic acid on neutrophil functions: a possible cause for its efficacy in treating pathogenetically unrelated diseases. Arch Dermatol Res 283:162–166

    Article  CAS  PubMed  Google Scholar 

  4. Akamatsu H, Oguchi M, Nishijima S et al (1990) The inhibition of free radical generation by human neutrophils through the synergistic effects of metronidazole with palmitoleic acid: a possible mechanism of action of metronidazole in rosacea and acne. Arch Dermatol Res 282:449–454

    Article  CAS  PubMed  Google Scholar 

  5. Argenziano G, Donnarumma G, Iovene MR et al (2003) Incidence of anti-helicobacter pylori and anti-CagA antibodies in rosacea patients. Int J Dermatol 42:601–604

    Article  PubMed  Google Scholar 

  6. Aubdool AA, Brain SD (2011) Neurovascular aspects of skin neurogenic inflammation. J Investig Dermatol Symp Proc/Soc Investig Dermatol Inc [and] Eur Soc Dermatol Res 15:33–39

    Article  CAS  Google Scholar 

  7. Bagchi D, Bhattacharya G, Stohs SJ (1996) Production of reactive oxygen species by gastric cells in association with Helicobacter pylori. Free Radic Res 24:439–450

    Article  CAS  PubMed  Google Scholar 

  8. Bakar O, Demircay Z, Yuksel M et al (2007) The effect of azithromycin on reactive oxygen species in rosacea. Clin Exp Dermatol 32:197–200

    Article  CAS  PubMed  Google Scholar 

  9. Ballaun C, Weninger W, Uthman A et al (1995) Human keratinocytes express the three major splice forms of vascular endothelial growth factor. J Invest Dermatol 104:7–10

    Article  CAS  PubMed  Google Scholar 

  10. Baz K, Cimen MY, Kokturk A et al (2004) Plasma reactive oxygen species activity and antioxidant potential levels in rosacea patients: correlation with seropositivity to Helicobacter pylori. Int J Dermatol 43:494–497

    Article  CAS  PubMed  Google Scholar 

  11. Bielenberg DR, Bucana CD, Sanchez R et al (1998) Molecular regulation of UVB-induced cutaneous angiogenesis. J Invest Dermatol 111:864–872

    Article  CAS  PubMed  Google Scholar 

  12. Boixeda De Miquel D, Vazquez Romero M, Vazquez Sequeiros E et al (2006) Effect of Helicobacter pylori eradication therapy in rosacea patients. Rev Esp Enferm Dig 98:501–509

    Article  CAS  PubMed  Google Scholar 

  13. Bolognia J (2003) Dermatology. In: Bolognia J, Jorizzo J, Rapini R (eds) Dermatology. Mosby, London, p 2500

    Google Scholar 

  14. Bonnar E, Eustace P, Powell FC (1993) The demodex mite population in rosacea. J Am Acad Dermatol 28:443–448

    Article  CAS  PubMed  Google Scholar 

  15. Brauchle M, Funk JO, Kind P et al (1996) Ultraviolet B and H2O2 are potent inducers of vascular endothelial growth factor expression in cultured keratinocytes. J Biol Chem 271:21793–21797

    Article  CAS  PubMed  Google Scholar 

  16. Buechner SA (2005) Rosacea: an update. Dermatology 210:100–108

    Article  PubMed  Google Scholar 

  17. Casas C, Paul C, Lahfa M et al (2012) Quantification of Demodex folliculorum by PCR in rosacea and its relationship to skin innate immune activation. Exp Dermatol 21:906–910

    Article  CAS  PubMed  Google Scholar 

  18. Caubet C, Jonca N, Brattsand M et al (2004) Degradation of corneodesmosome proteins by two serine proteases of the kallikrein family, SCTE//KLK5//hK5 and SCCE//KLK7//hK7. J Investig Dermatol 122:1235–1244

    Article  CAS  PubMed  Google Scholar 

  19. Chen CJ, Kono H, Golenbock D et al (2007) Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat Med 13:851–856

    Article  CAS  PubMed  Google Scholar 

  20. Coda AB, Hata T, Miller J et al (2013) Cathelicidin, kallikrein 5, and serine protease activity is inhibited during treatment of rosacea with azelaic acid 15% gel. J Am Acad Dermatol 69:570–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Costa CP, Kirschning CJ, Busch D et al (2002) Role of chlamydial heat shock protein 60 in the stimulation of innate immune cells by Chlamydia pneumoniae. Eur J Immunol 32:2460–2470

    Article  PubMed  Google Scholar 

  22. Cotterill JA (1979) Perioral dermatitis. Br J Dermatol 101:259–262

    Article  CAS  PubMed  Google Scholar 

  23. Crawford GH, Pelle MT, James WD (2004) Rosacea: I. Etiology, pathogenesis, and subtype classification. J Am Acad Dermatol 51:327–341; quiz 342-324

    Article  PubMed  Google Scholar 

  24. De Y, Chen Q, Schmidt AP et al (2000) LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med 192:1069–1074

    Article  Google Scholar 

  25. Del Rosso JQ (2006) Update on rosacea pathogenesis and correlation with medical therapeutic agents. Cutis 78:97–100

    PubMed  Google Scholar 

  26. Descargues P, Deraison C, Prost C et al (2006) Corneodesmosomal cadherins are preferential targets of stratum corneum trypsin- and chymotrypsin-like hyperactivity in netherton syndrome. J Invest Dermatol 126:1622–1632

    Article  CAS  PubMed  Google Scholar 

  27. Detmar M, Brown LF, Claffey KP et al (1994) Overexpression of vascular permeability factor/vascular endothelial growth factor and its receptors in psoriasis. J Exp Med 180:1141–1146

    Article  CAS  PubMed  Google Scholar 

  28. Diaz C, O’callaghan CJ, Khan A et al (2003) Rosacea: a cutaneous marker of Helicobacter pylori infection? Results of a pilot study. Acta Derm Venereol 83:282–286

    Article  PubMed  Google Scholar 

  29. Ding SZ, Minohara Y, Fan XJ et al (2007) Helicobacter pylori infection induces oxidative stress and programmed cell death in human gastric epithelial cells. Infect Immun 75:4030–4039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dorschner RA, Pestonjamasp VK, Tamakuwala S et al (2001) Cutaneous injury induces the release of cathelicidin anti-microbial peptides active against group A streptococcus. J Invest Dermatol 117:91–97

    Article  CAS  PubMed  Google Scholar 

  31. Erbagci Z, Ozgoztasi O (1998) The significance of demodex folliculorum density in rosacea. Int J Dermatol 37:421–425

    Article  CAS  PubMed  Google Scholar 

  32. Forton F, Seys B (1993) Density of demodex folliculorum in rosacea: a case-control study using standardized skin-surface biopsy. Br J Dermatol 128:650–659

    Article  CAS  PubMed  Google Scholar 

  33. Fowler J, Jarratt M, Moore A et al (2012) Once-daily topical brimonidine tartrate gel 0.5% is a novel treatment for moderate to severe facial erythema of rosacea: results of two multicentre, randomized and vehicle-controlled studies. Br J Dermatol 166:633–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gallo RL, Ono M, Povsic T et al (1994) Syndecans, cell surface heparan sulfate proteoglycans, are induced by a proline-rich antimicrobial peptide from wounds. Proc Natl Acad Sci U S A 91:11035–11039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gedik GK, Karaduman A, Sivri B et al (2005) Has Helicobacter pylori eradication therapy any effect on severity of rosacea symptoms? J Eur Acad Dermatol Venereol 19:398–399

    Article  CAS  PubMed  Google Scholar 

  36. Gobert AP, Bambou JC, Werts C et al (2004) Helicobacter pylori heat shock protein 60 mediates interleukin-6 production by macrophages via a toll-like receptor (TLR)-2-, TLR-4-, and myeloid differentiation factor 88-independent mechanism. J Biol Chem 279:245–250

    Article  CAS  PubMed  Google Scholar 

  37. Gomaa AH, Yaar M, Eyada MM et al (2007) Lymphangiogenesis and angiogenesis in non-phymatous rosacea. J Cutan Pathol 34:748–753

    Article  PubMed  Google Scholar 

  38. Gurer MA, Erel A, Erbas D et al (2002) The seroprevalence of Helicobacter pylori and nitric oxide in acne rosacea. Int J Dermatol 41:768–770

    Article  PubMed  Google Scholar 

  39. Guzman-Sanchez DA, Ishiuji Y, Patel T et al (2007) Enhanced skin blood flow and sensitivity to noxious heat stimuli in papulopustular rosacea. J Am Acad Dermatol 57:800–805

    Article  PubMed  Google Scholar 

  40. Jain A, Sangal L, Basal E et al (2002) Anti-inflammatory effects of erythromycin and tetracycline on propionibacterium acnes induced production of chemotactic factors and reactive oxygen species by human neutrophils. Dermatol Online J 8:2

    CAS  PubMed  Google Scholar 

  41. Jang YH, Sim JH, Kang HY et al (2011) Immunohistochemical expression of matrix metalloproteinases in the granulomatous rosacea compared with the non-granulomatous rosacea. J Eur Acad Dermatol Venereol: JEADV 25:544–548

    Article  CAS  PubMed  Google Scholar 

  42. Jansen T, Plewig G (1997) Rosacea: classification and treatment. J R Soc Med 90:144–150

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Jones MP, Knable AL Jr, White MJ et al (1998) Helicobacter pylori in rosacea: lack of an association. Arch Dermatol 134:511

    Article  CAS  PubMed  Google Scholar 

  44. Rundhaug JE (2005) Matrix metalloproteinases and angiogenesis. J Cell Mol Med 9:267–285

    Article  CAS  PubMed  Google Scholar 

  45. Kanada KN, Nakatsuji T, Gallo RL (2012) Doxycycline indirectly inhibits proteolytic activation of tryptic kallikrein-related peptidases and activation of cathelicidin. J Invest Dermatol 132:1435–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kawaguchi Y, Tanaka H, Okada T et al (1996) The effects of ultraviolet A and reactive oxygen species on the mRNA expression of 72-kDa type IV collagenase and its tissue inhibitor in cultured human dermal fibroblasts. Arch Dermatol Res 288:39–44

    Article  CAS  PubMed  Google Scholar 

  47. Kawahara T, Kuwano Y, Teshima-Kondo S et al (2001) Toll-like receptor 4 regulates gastric pit cell responses to Helicobacter pylori infection. J Med Invest 48:190–197

    CAS  PubMed  Google Scholar 

  48. Kim J, Ochoa MT, Krutzik SR et al (2002) Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. J Immunol 169:1535–1541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Koczulla R, Von Degenfeld G, Kupatt C et al (2003) An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest 111:1665–1672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lacey N, Delaney S, Kavanagh K et al (2007) Mite-related bacterial antigens stimulate inflammatory cells in rosacea. Br J Dermatol 157:474–481

    Article  CAS  PubMed  Google Scholar 

  51. Lee HM, Shin DM, Kim KK et al (2009) Roles of reactive oxygen species in CXCL8 and CCL2 expression in response to the 30-kDa antigen of mycobacterium tuberculosis. J Clin Immunol 29:46–56

    Article  CAS  PubMed  Google Scholar 

  52. Lee Y, Kim H, Kim S et al (2009) Myeloid differentiation factor 88 regulates basal and UV-induced expressions of IL-6 and MMP-1 in human epidermal keratinocytes. J Invest Dermatol 129:460–467

    Article  CAS  PubMed  Google Scholar 

  53. Longuet-Perret I, Schmitt D, Viac J (1998) Tumour necrosis factor-alpha is involved in the contrasting effects of ultraviolet B and ultraviolet A1 radiation on the release by normal human keratinocytes of vascular permeability factor. Br J Dermatol 138:221–224

    Article  CAS  PubMed  Google Scholar 

  54. Määttä M, Kari O, Tervahartiala T et al (2006) Tear fluid levels of MMP-8 are elevated in ocular rosacea—treatment effect of oral doxycycline. Graefes Arch Clin Exp Ophthalmol 244:957–962

    Article  PubMed  Google Scholar 

  55. Mashimo M, Nishikawa M, Higuchi K et al (2006) Production of reactive oxygen species in peripheral blood is increased in individuals with Helicobacter pylori infection and decreased after its eradication. Helicobacter 11:266–271

    Article  CAS  PubMed  Google Scholar 

  56. Meylan E, Tschopp JR, Karin M (2006) Intracellular pattern recognition receptors in the host response. Nature 442:39–44

    Article  CAS  PubMed  Google Scholar 

  57. Michael IP, Sotiropoulou G, Pampalakis G et al (2005) Biochemical and enzymatic characterization of human kallikrein 5 (hK5), a novel serine protease potentially involved in cancer progression. J Biol Chem 280:14628–14635

    Article  CAS  PubMed  Google Scholar 

  58. Miyachi Y, Yoshioka A, Imamura S et al (1986) Effect of antibiotics on the generation of reactive oxygen species. J Invest Dermatol 86:449–453

    Article  CAS  PubMed  Google Scholar 

  59. Naru E, Suzuki T, Moriyama M et al (2005) Functional changes induced by chronic UVA irradiation to cultured human dermal fibroblasts. Br J Dermatol 153(Suppl 2):6–12

    Article  CAS  PubMed  Google Scholar 

  60. Oztas MO, Balk M, Ogus E et al (2003) The role of free oxygen radicals in the aetiopathogenesis of rosacea. Clin Exp Dermatol 28:188–192

    Article  CAS  PubMed  Google Scholar 

  61. Peus D, Vasa RA, Beyerle A et al (1999) UVB activates ERK1/2 and p38 signaling pathways via reactive oxygen species in cultured keratinocytes. J Invest Dermatol 112:751–756

    Article  CAS  PubMed  Google Scholar 

  62. Peus D, Vasa RA, Meves A et al (1998) H2O2 is an important mediator of UVB-induced EGF-receptor phosphorylation in cultured keratinocytes. J Invest Dermatol 110:966–971

    Article  CAS  PubMed  Google Scholar 

  63. Rebora A, Drago F, Picciotto A (1994) Helicobacter pylori in patients with rosacea. Am J Gastroenterol 89:1603–1604

    CAS  PubMed  Google Scholar 

  64. Sapadin AN, Fleischmajer R (2006) Tetracyclines: nonantibiotic properties and their clinical implications. J Am Acad Dermatol 54:258–265

    Article  PubMed  Google Scholar 

  65. Sayama K, Komatsuzawa H, Yamasaki K et al (2005) New mechanisms of skin innate immunity: ASK1-mediated keratinocyte differentiation regulates the expression of beta-defensins, LL37, and TLR2. Eur J Immunol 35:1886–1895

    Article  CAS  PubMed  Google Scholar 

  66. Scharffetter-Kochanek K, Wlaschek M, Briviba K et al (1993) Singlet oxygen induces collagenase expression in human skin fibroblasts. FEBS Lett 331:304–306

    Article  CAS  PubMed  Google Scholar 

  67. Schauber J, Dorschner RA, Coda AB et al (2007) Injury enhances TLR2 function and antimicrobial peptide expression through a vitamin D-dependent mechanism. J Clin Invest 117:803–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schwab VD, Sulk M, Seeliger S et al (2011) Neurovascular and neuroimmune aspects in the pathophysiology of rosacea. J Investig Dermatol Symp Proc/Soc Investig Dermatol Inc [and] Eur Soc Dermatol Res 15:53–62

    Article  CAS  Google Scholar 

  69. Seiffert K, Ding W, Wagner JA et al (2006) ATPgammaS enhances the production of inflammatory mediators by a human dermal endothelial cell line via purinergic receptor signaling. J Invest Dermatol 126:1017–1027

    Article  CAS  PubMed  Google Scholar 

  70. Shibata M, Katsuyama M, Onodera T et al (2008) Glucocorticoids enhance toll-like receptor 2 expression in human keratinocytes stimulated with propionibacterium acnes or proinflammatory cytokines. J Invest Dermatol 129:375–382

    Article  PubMed  Google Scholar 

  71. Sibenge S, Gawkrodger DJ (1992) Rosacea: a study of clinical patterns, blood flow, and the role of demodex folliculorum. J Am Acad Dermatol 26:590–593

    Article  CAS  PubMed  Google Scholar 

  72. Smith MF Jr, Mitchell A, Li G et al (2003) Toll-like receptor (TLR) 2 and TLR5, but not TLR4, are required for Helicobacter pylori-induced NF-kappa B activation and chemokine expression by epithelial cells. J Biol Chem 278:32552–32560

    Article  CAS  PubMed  Google Scholar 

  73. Sneddon I (1972) Perioral dermatitis. Br J Dermatol 87:430–434

    Article  CAS  PubMed  Google Scholar 

  74. Sobrin L, Liu Z, Monroy DC et al (2000) Regulation of MMP-9 activity in human tear fluid and corneal epithelial culture supernatant. Invest Ophthalmol Vis Sci 41:1703–1709

    CAS  PubMed  Google Scholar 

  75. Sorsa T, Lindy O, Konttinen YT et al (1993) Doxycycline in the protection of serum alpha-1-antitrypsin from human neutrophil collagenase and gelatinase. Antimicrob Agents Chemother 37:592–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Spoendlin J, Voegel JJ, Jick SS et al (2012) A study on the epidemiology of rosacea in the U.K. Br J Dermatol 167:598–605

    Article  CAS  PubMed  Google Scholar 

  77. Steinhoff M, Buddenkotte J, Aubert J et al (2011) Clinical, cellular, and molecular aspects in the pathophysiology of rosacea. J Investig Dermatol Symp Proc/Soc Investig Dermatol Inc [and] Eur Soc Dermatol Res 15:2–11

    Article  CAS  Google Scholar 

  78. Szlachcic A (2002) The link between Helicobacter pylori infection and rosacea. J Eur Acad Dermatol Venereol 16:328–333

    Article  CAS  PubMed  Google Scholar 

  79. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376

    Article  CAS  PubMed  Google Scholar 

  80. Taylor KR, Yamasaki K, Radek KA et al (2007) Recognition of hyaluronan released in sterile injury involves a unique receptor complex dependent on toll-like receptor 4, CD44, and MD-2. J Biol Chem 282:18265–18275

    Article  CAS  PubMed  Google Scholar 

  81. Tjabringa GS, Aarbiou J, Ninaber DK et al (2003) The antimicrobial peptide LL-37 activates innate immunity at the airway epithelial surface by transactivation of the epidermal growth factor receptor. J Immunol 171:6690–6696

    Article  CAS  PubMed  Google Scholar 

  82. Utas S, Ozbakir O, Turasan A et al (1999) Helicobacter pylori eradication treatment reduces the severity of rosacea. J Am Acad Dermatol 40:433–435

    Article  CAS  PubMed  Google Scholar 

  83. Weber G (1972) Rosacea-like dermatitis: contraindication or intolerance reaction to strong steroids. Br J Dermatol 86:253–259

    Article  CAS  PubMed  Google Scholar 

  84. Wilkin J, Dahl M, Detmar M et al (2002) Standard classification of rosacea: report of the National Rosacea Society Expert Committee on the classification and staging of rosacea. J Am Acad Dermatol 46:584–587

    Article  PubMed  Google Scholar 

  85. Wilkin J, Dahl M, Detmar M et al (2004) Standard grading system for rosacea: report of the National Rosacea Society Expert Committee on the classification and staging of rosacea. J Am Acad Dermatol 50:907–912

    Article  PubMed  Google Scholar 

  86. Wilkinson DS, Kirton V, Wilkinson JD (1979) Perioral dermatitis: a 12-year review. Br J Dermatol 101:245–257

    Article  CAS  PubMed  Google Scholar 

  87. Wlaschek M, Briviba K, Stricklin GP et al (1995) Singlet oxygen may mediate the ultraviolet a-induced synthesis of interstitial collagenase. J Invest Dermatol 104:194–198

    Article  CAS  PubMed  Google Scholar 

  88. Yamasaki K, Di Nardo A, Bardan A et al (2007) Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nat Med 13:975–980

    Article  CAS  PubMed  Google Scholar 

  89. Yamasaki K, Kanada K, Macleod DT et al (2011) TLR2 expression is increased in rosacea and stimulates enhanced serine protease production by keratinocytes. J Invest Dermatol 131:688–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yamasaki K, Schauber J, Coda A et al (2006) Kallikrein-mediated proteolysis regulates the antimicrobial effects of cathelicidins in skin. FASEB J 20:2068–2080

    Article  CAS  PubMed  Google Scholar 

  91. Yang CS, Shin DM, Lee HM et al (2008) ASK1-p38 MAPK-p47phox activation is essential for inflammatory responses during tuberculosis via TLR2-ROS signalling. Cell Microbiol 10:741–754

    Article  CAS  PubMed  Google Scholar 

  92. Yoshioka A, Miyachi Y, Imamura S et al (1986) Anti-oxidant effects of retinoids on inflammatory skin diseases. Arch Dermatol Res 278:177–183

    Article  CAS  PubMed  Google Scholar 

  93. Young CN, Koepke JI, Terlecky LJ et al (2008) Reactive oxygen species in tumor necrosis factor-alpha-activated primary human keratinocytes: implications for psoriasis and inflammatory skin disease. J Invest Dermatol 128:2606–2614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenshi Yamasaki M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Yamasaki, K. (2016). Rosacea in Skin Innate Immunity. In: Kabashima, K. (eds) Immunology of the Skin. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55855-2_28

Download citation

Publish with us

Policies and ethics