Skip to main content

Insights into Transglutaminase 2 Function Gained from Genetically Modified Animal Models

  • Chapter
  • First Online:
Transglutaminases

Abstract

Transglutaminase 2 (TG2) has been implicated in a number of physiological processes and in disease. A number of different types of genetically engineered mice have been generated to help understand the role and regulation of TG2 in physiology and pathology and to help delineate the molecular basis of its actions. This chapter will briefly review guidelines for animal husbandry and animal study design, TG2 mouse models and recent insights into the physiology and pathophysiology of TG2 that have come from the study of these genetically engineered animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abedin M, Tintut Y, Demer LL (2004) Vascular calcification: mechanisms and clinical ramifications. Arterioscler Thromb Vasc Biol 24(7):1161–1170

    Article  CAS  PubMed  Google Scholar 

  • Bailey CD, Johnson GV (2006) The protective effects of cystamine in the R6/2 Huntington’s disease mouse involve mechanisms other than the inhibition of tissue transglutaminase. Neurobiol Aging 27(6):871–879

    Article  CAS  PubMed  Google Scholar 

  • Bailey CD, Graham RM, Nanda N, Davies PJ, Johnson GV (2004) Validity of mouse models for the study of tissue transglutaminase in neurodegenerative diseases. Mol Cell Neurosci 25(3):493–503

    Article  CAS  PubMed  Google Scholar 

  • Bakker EN, Pistea A, Spaan JA, Rolf T, de Vries CJ, van Rooijen N, Candi E, VanBavel E (2006) Flow-dependent remodeling of small arteries in mice deficient for tissue-type transglutaminase: possible compensation by macrophage-derived factor XIII. Circ Res 99(1):86–92

    Article  CAS  PubMed  Google Scholar 

  • Balajthy Z, Csomós K, Vámosi G, Szántó A, Lanotte M, Fésüs L (2006) Tissue-transglutaminase contributes to neutrophil granulocyte differentiation and functions. Blood 108(6):2045–2054

    Article  CAS  PubMed  Google Scholar 

  • Basso M, Berlin J, Xia L, Sleiman SF, Ko B, Haskew-Layton R, Kim E, Antonyak MA, Cerione RA, Iismaa SE, Willis D, Cho S, Ratan RR (2012) Transglutaminase inhibition protects against oxidative stress-induced neuronal death downstream of pathological ERK activation. J Neurosci 32(19):6561–6569

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Battaglia G, Farrace MG, Mastroberardino PG, Viti I, Fimia GM, Van Beeumen J, Devreese B, Melino G, Molinaro G, Busceti CL, Biagioni F, Nicoletti F, Piacentini M (2007) Transglutaminase 2 ablation leads to defective function of mitochondrial respiratory complex I affecting neuronal vulnerability in experimental models of extrapyramidal disorders. J Neurochem 100(1):36–49

    Article  CAS  PubMed  Google Scholar 

  • Beazley KE, Nurminskaya M (2015) Effects of dietary quercetin on female fertility in mice: implication of transglutaminase 2. Reprod Fertil Dev. doi:10.1071/RD14155 [Epub ahead of print]

  • Beazley KE, Deasey S, Lima F, Nurminskaya MV (2012) Transglutaminase 2-mediated activation of β-catenin signaling has a critical role in warfarin-induced vascular calcification. Arterioscler Thromb Vasc Biol 32(1):123–130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beazley KE, Banyard D, Lima F, Deasey SC, Nurminsky DI, Konoplyannikov M, Nurminskaya MV (2013a) Transglutaminase inhibitors attenuate vascular calcification in a preclinical model. Arterioscler Thromb Vasc Biol 33(1):43–51

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beazley KE, Reckard S, Nurminsky D, Lima F, Nurminskaya M (2013b) Two sides of MGP null arterial disease: chondrogenic lesions dependent on transglutaminase 2 and elastin fragmentation associated with induction of adipsin. J Biol Chem 288(43):31400–31408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bernassola F, Boumis G, Corazzari M, Bertini G, Citro G, Knight RA, Amiconi G, Melino G (2002a) Osmotic resistance of high-density erythrocytes in transglutaminase 2-deficient mice. Biochem Biophys Res Commun 291(5):1123–1127

    Article  CAS  PubMed  Google Scholar 

  • Bernassola F, Federici M, Corazzari M, Terrinoni A, Hribal ML, De Laurenzi V, Ranalli M, Massa O, Sesti G, Mclean WHI, Citro G, Barbetti F, Melino G (2002b) Role of transglutaminase 2 in glucose tolerance: knockout mice studies and putative mutation in a MODY patient. FASEB J 16(11):1371–1378

    Article  CAS  PubMed  Google Scholar 

  • Bethune MT, Khosla C (2008) Parallels between pathogens and gluten peptides in celiac sprue. PLoS Pathog 4(2):e34

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bijli KM, Kanter BG, Minhajuddin M, Leonard A, Xu L, Fazal F, Rahman A (2014) Regulation of endothelial cell inflammation and lung polymorphonuclear lymphocyte infiltration by transglutaminase 2. Shock 42(6):562–569

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boisvert WA, Rose DM, Boullier A, Quehenberger O, Sydlaske A, Johnson KA, Curtiss LK, Terkeltaub R (2006) Leukocyte transglutaminase 2 expression limits atherosclerotic lesion size. Arterioscler Thromb Vasc Biol 26(3):563–569

    Article  CAS  PubMed  Google Scholar 

  • Brennan K (2011) Colony management. In: Pease S, Saunders TL (eds) Advanced protocols for animal transgenesis. Springer, Berlin/Heidelberg, pp 535–576

    Chapter  Google Scholar 

  • Cecil DL, Terkeltaub R (2008) Transamidation by transglutaminase 2 transforms S100A11 calgranulin into a procatabolic cytokine for chondrocytes. J Immunol 180(12):8378–8385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Colak G, Johnson GV (2012) Complete transglutaminase 2 ablation results in reduced stroke volumes and astrocytes that exhibit increased survival in response to ischemia. Neurobiol Dis 45(3):1042–1050

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cordell PA, Newell LM, Standeven KF, Adamson P, Simpson KR, Smith KA, Jackson CL, Grant PJ, Pease RJ (2015) Normal bone deposition occurs in mice deficient in factor XIII-A and transglutaminase 2. Matrix Biol 43(Apr):85–96

    Google Scholar 

  • De Laurenzi V, Melino G (2001) Gene disruption of tissue transglutaminase. Mol Cell Biol 21(1):148–155

    Article  PubMed Central  PubMed  Google Scholar 

  • Deasey S, Shanmugasundaram S, Nurminskaya M (2013) Tissue-specific responses to loss of transglutaminase 2. Amino Acids 44(1):179–187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • D’Eletto M, Farrace MG, Falasca L, Reali V, Oliverio S, Melino G, Griffin M, Fimia GM, Piacentini M (2009) Transglutaminase 2 is involved in autophagosome maturation. Autophagy 5(8):1145–1154

    Article  PubMed  Google Scholar 

  • D’Eletto M, Farrace MG, Rossin F, Strappazzon F, Giacomo GD, Cecconi F, Melino G, Sepe S, Moreno S, Fimia GM, Falasca L, Nardacci R, Piacentini M (2012) Type 2 transglutaminase is involved in the autophagy-dependent clearance of ubiquitinated proteins. Cell Death Differ 19(7):1228–1238

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Delhase M, Kim SY, Lee H, Naiki-Ito A, Chen Y, Ahn ER, Murata K, Kim SJ, Lautsch N, Kobayashi KS, Shirai T, Karin M, Nakanishi M (2012) TANK-binding kinase 1 (TBK1) controls cell survival through PAI-2/serpinB2 and transglutaminase 2. Proc Natl Acad Sci U S A 109(4):E177–E186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Di Giacomo G, Lentini A, Beninati S, Piacentini M, Rodolfo C (2009) In vivo evaluation of type 2 transglutaminase contribution to the metastasis formation in melanoma. Amino Acids 36(4):717–724

    Article  CAS  PubMed  Google Scholar 

  • Falasca L, Iadevaia V, Ciccosanti F, Melino G, Serafino A, Piacentini M (2005) Transglutaminase type II is a key element in the regulation of the anti-inflammatory response elicited by apoptotic cell engulfment. J Immunol 174(11):7330–7340

    Article  CAS  PubMed  Google Scholar 

  • Falasca L, Farrace MG, Rinaldi A, Tuosto L, Melino G, Piacentini M (2008) Transglutaminase type II is involved in the pathogenesis of endotoxic shock. J Immunol 180(4):2616–2624

    Article  CAS  PubMed  Google Scholar 

  • Fésüs L, Szondy Z (2005) Transglutaminase 2 in the balance of cell death and survival. FEBS Lett 579(15):3297–3302

    Article  PubMed  CAS  Google Scholar 

  • Filiano AJ, Tucholski J, Dolan PJ, Colak G, Johnson GV (2010) Transglutaminase 2 protects against ischemic stroke. Neurobiol Dis 39(3):334–343

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fisher M, Jones RA, Huang L, Haylor JL, El Nahas M, Griffin M, Johnson TS (2009) Modulation of tissue transglutaminase in tubular epithelial cells alters extracellular matrix levels: a potential mechanism of tissue scarring. Matrix Biol 28(1):20–31

    Article  CAS  PubMed  Google Scholar 

  • Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147(4):742–758

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grosso H, Woo J-M, Lee K-W, Im J-Y, Masliah E, Junn E, Mouradian MM (2014) Transglutaminase 2 exacerbates α-synuclein toxicity in mice and yeast. FASEB J 28(10):4280–4291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huebner JL, Johnson KA, Kraus VB, Terkeltaub RA (2009) Transglutaminase 2 is a marker of chondrocyte hypertrophy and osteoarthritis severity in the Hartley guiniea pig model of knee OA. Osteoarthritis Cartilage 17(8):1056–1064

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Iismaa SE, Mearns BM, Lorand L, Graham RM (2009) Transglutaminases and disease: Lessons from genetically engineered mouse models and inherited disorders. Physiol Rev 89(3):991–1023

    Article  CAS  PubMed  Google Scholar 

  • Iismaa SE, Aplin M, Holman S, Yiu TW, Jackson K, Burchfield JG, Mitchell CJ, O’Reilly L, Davenport A, Cantley J, Schmitz-Peiffer C, Biden TJ, Cooney GJ, Graham RM (2013) Glucose homeostasis in mice is transglutaminase 2 independent. PLoS One 8(5):e66346

    Article  Google Scholar 

  • Ishiguro K, Kadomatsu K, Kojima T, Muramatsu H, Tsuzuki S, Nakamura E, Kusugami K, Saito H, Muramatsu T (2000) Syndecan-4 deficiency impairs focal adhesion formation only under restricted conditions. J Biol Chem 275(8):5249–5252

    Article  CAS  PubMed  Google Scholar 

  • Iversen R, Di Niro R, Stamnaes J, Lundin KE, Wilson PC, Sollid LM (2013) Transglutaminase 2-specific autoantibodies in celiac disease target clustered, N-terminal epitopes not displayed on the surface of cells. J Immunol 190(12):5981–5991

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johnson KA, van Etten D, Nanda N, Graham RM, Terkeltaub RA (2003) Distinct transglutaminase 2-independent and transglutaminase 2-dependent pathways mediate articular chondrocyte hypertrophy. J Biol Chem 278(21):18824–18832

    Article  CAS  PubMed  Google Scholar 

  • Johnson KA, Polewski M, Terkeltaub RA (2008) Transglutaminase 2 is central to induction of the arterial calcification program by smooth muscle cells. Circ Res 102(5):529–537

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johnson KB, Petersen-Jones H, Thompson JM, Hitomi K, Itoh M, Bakker EN, Johnson GV, Colak G, Watts SW (2012) Vena cava and aortic smooth muscle cells express transglutaminases 1 and 4 in addition to transglutaminase 2. Am J Physiol Heart Circ Physiol 302(7):H1355–H1366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jones RA, Kotsakis P, Johnson TS, Chau DYS, Ali S, Melino G, Griffin M (2006) Matrix changes induced by transglutaminase 2 lead to inhibition of angiogenesis and tumor growth. Cell Death Differ 13(9):1442–1453

    Article  CAS  PubMed  Google Scholar 

  • Kalliokoski S, Caja S, Frias R, Laurila K, Koskinen O, Niemelä O, Mäki M, Kaukinen K, Korponay-Szabó IR, Lindfors K (2015) Injection of celiac disease patient sera or immunoglobulins to mice reproduces a condition mimicking early developing celiac disease. J Mol Med 93(1):51–62

    Article  CAS  PubMed  Google Scholar 

  • Kim DS, Kim B, Tahk H, Kim DH, Ahn ER, Choi C, Jeon Y, Park SY, Lee H, Oh SH, Kim SY (2010) Transglutaminase 2 gene ablation protects against renal ischemic injury by blocking constant NF-κB activation. Biochem Biophys Res Commun 403(3–4):479–484

    Article  CAS  PubMed  Google Scholar 

  • Kim J-H, Jeong EM, Jeong Y-J, Lee WJ, Kang JS, Kim I-G, Hwang Y-I (2012) Transglutaminase 2 modulates antigen-specific antibody response by suppressing Blimp-1 and AID expression of B cells in mice. Immunol Lett 147(1–2):18–28

    Article  CAS  PubMed  Google Scholar 

  • Kim J-H, Hong JM, Jeong EM, Lee WJ, Kim H-R, Kang JS, Kim I-G, Hwang Y-I (2014a) Lack of transglutaminase 2 diminished T-cell responses in mice. Immunology 142(3):506–515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim J-H, Jeong EM, Jeong Y-J, Lee WJ, Kang JS, Kim I-G, Hwang Y-I (2014b) Transglutaminase 2 on the surface of dendritic cells is proposed to be involved in dendritic cell-T cell interaction. Cell Immunol 289(1–2):55–62

    Article  CAS  PubMed  Google Scholar 

  • Korponay-Szabo IR, Laurila K, Szondy Z, Halttunen T, Szalai Z, Dahlbom I, Rantala I, Kovacs JB, Fesus L, Maki M (2003) Missing endomysial and reticulin binding of coeliac antibodies in transglutaminase 2 knockout tissues. Gut 52(2):199–204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krasnikov BF, Kim SY, McConoughey SJ, Ryu H, Xu H, Stavrovskaya I, Iismaa SE, Mearns BM, Ratan RR, Blass JP, Gibson GE, Cooper AJ (2005) Transglutaminase activity is present in highly purified nonsynaptosomal mouse brain and liver mitochondria. Biochemistry 44(21):7830–7843

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar A, Kneynsberg A, Tucholski J, Perry G, van Groen T, Detloff PJ, Lesort M (2012) Tissue transglutaminase overexpression does not modify the disease phenotype of the R6/2 mouse model of Huntington’s disease. Exp Neurol 237(1):78–89

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Landis SC, Amara SG, Asadullah K, Austin CP, Blumenstein R, Bradley EW, Crystal RG, Darnell RB, Ferrante RJ, Fillit H, Finkelstein R, Fisher M, Gendelman HE, Golub RM, Goudreau JL, Gross RA, Gubitz AK, Hesterlee SE, Howells DW, Huguenard J, Kelner K, Koroshetz W, Krainc D, Lazic SE, Levine MS, Macleod MR, McCall JM, Moxley RT, Narasimhan K, Noble LJ, Perrin S, Porter JD, Steward O, Unger E, Utz U, Silberberg SD (2012) A call for transparent reporting to optimize the predictive value of preclinical research. Nature 490(7419):187–191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lauer P, Metzner HJ, Zettlmeissl G, Li M, Smith AG, Lathe R, Dickneite G (2002) Targeted inactivation of the mouse locus encoding coagulation factor XIII-A: hemostatic abnormalities in mutant mice and characterization of the coagulation deficit. Thromb Haemost 88(6):967–974

    CAS  PubMed  Google Scholar 

  • Lorand L, Conrad SM (1984) Transglutaminases. Mol Cell Biochem 58(1–2):9–35

    Article  CAS  PubMed  Google Scholar 

  • Malorni W, Farrace MG, Matarrese P, Tinari A, Ciarlo L, Mousavi-Shafaei P, D’Eletto M, Di Giacomo G, Melino G, Palmieri L, Rodolfo C, Piacentini M (2009) The adenine nucleotide translocator 1 acts as a type 2 transglutaminase substrate: implications for mitochondrial-dependent apoptosis. Cell Death Differ 16(11):1480–1492

    Article  CAS  PubMed  Google Scholar 

  • Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies SW, Bates GP (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87(3):493–506

    Article  CAS  PubMed  Google Scholar 

  • Mastroberardino PG, Iannicola C, Nardacci R, Bernassola F, De Laurenzi V, Melino G, Moreno S, Pavone F, Oliverio S, Fesüs L, Piacentini M (2002) ‘Tissue’ transglutaminase ablation reduces neuronal death and prolongs survival in a mouse model of Huntington’s disease. Cell Death Differ 9(9):873–880

    Article  CAS  PubMed  Google Scholar 

  • Mastroberardino PG, Farrace MG, Viti I, Pavone F, Fimia GM, Melino G, Rodolfo C, Piacentini M (2006) “Tissue” transglutaminase contributes to the formation of disulphide bridges in proteins of mitochondrial respiratory complexes. Biochim Biophys Acta 1757(9–10):1357–1365

    Article  CAS  PubMed  Google Scholar 

  • Matic I, Sacchi A, Rinaldi A, Melino G, Khosla C, Falasca L, Piacentini M (2010) Characterization of transglutaminase type II role in dendritic cell differentiation and function. J Leukoc Biol 88(1):181–188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Menalled L, Lutz C, Ramboz S, Brunner D, Lager B, Noble S, Park L, Howland D (2014a) A field guide to working with mouse models of Huntington’s disease. https://www.chdifoundation.org/wp-content/uploads/HD_Field_Guide_040414.pdf

  • Menalled LB, Kudwa AE, Oakeshott S, Farrar A, Paterson N, Filippov I, Miller S, Kwan M, Olsen M, Beltran J, Torello J, Fitzpatrick J, Mushlin R, Cox K, McConnell K, Mazzella M, He D, Osborne GF, Al-Nackkash R, Bates GP, Tuunanen P, Lehtimaki K, Brunner D, Ghavami A, Ramboz S, Park L, Macdonald D, Munoz-Sanjuan I, Howland D (2014b) Genetic deletion of transglutaminase 2 does not rescue the phenotypic deficits observed in R6/2 and zQ175 mouse models of Huntington’s disease. PLoS One 9 (6):e99520

    Google Scholar 

  • Michlewska S, McColl A, Rossi AG, Megson IL, Dransfield I (2007) Clearance of dying cells and autoimmunity. Autoimmunity 40(4):267–273

    Article  CAS  PubMed  Google Scholar 

  • Min SK, Min SI, Jeong EM, Cho SY, Ha J, Kim SJ, Kim IG (2014) Intimal hyperplasia in loop-injured carotid arteries is attenuated in transglutaminase 2-null mice. J Korean Med Sci 29(3):363–369

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nadella V, Wang Z, Johnson TS, Griffin M, Devitt A (2015) Transglutaminase 2 interacts with syndecan-4 and CD44 at the surface of human macrophages to promote removal of apoptotic cells. Biochim Biophys Acta 1853(1):201–212

    Article  CAS  PubMed  Google Scholar 

  • Nagy L, Thomázy VA, Saydak MM, Stein JP, Davies PJ (1997) The promoter of the mouse tissue transglutaminase gene directs tissue-specific, retinoid-regulated and apoptosis-linked expression. Cell Death Differ 4(7):534–547

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Al-Jallad HF, Mousa A, Kaartinen MT (2007) Expression and localization of plasma transglutaminase factor XIIIA in bone. J Histochem Cytochem 55(7):675–685

    Article  CAS  PubMed  Google Scholar 

  • Nanda N, Iismaa SE, Owens WA, Husain A, Mackay F, Graham RM (2001) Targeted inactivation of Gh/tissue transglutaminase II. J Biol Chem 276(23):20673–20678

    Article  CAS  PubMed  Google Scholar 

  • Nardacci R, Lo Iacono O, Ciccosanti F, Falasca L, Addesso M, Amendola A, Antonucci G, Craxí A, Fimia GM, Iadevaia V, Melino G, Ruco L, Tocci G, Ippolito G, Piacentini M (2003) Transglutaminase type II plays a protective role in hepatic injury. Am J Pathol 162(4):1293–1303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nurminskaya M, Beazley KE, Smith EP, Belkin AM (2014) Transglutaminase 2 promotes PDGF-mediated activation of PDGFR/Akt1 and β-catenin signaling in vascular smooth muscle cells and supports neointima formation. J Vasc Res 51(6):418–428

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oh K, Park H-B, Byoun O-K, Shin D-M, Jeong EM, Kim YW, Kim YS, Melino G, Kim I-G, Lee D-S (2011) Epithelial transglutaminase 2 is needed for T cell interleukin-17 production and subsequent pulmonary inflammation and fibrosis in bleomycin-treated mice. J Exp Med 208(8):1707–1719

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oh K, Park H-B, Seo MW, Byoun O-J, Lee D-S (2012) Tranglutaminase 2 exacerbates experimental autoimmune encephalomyelitis through positive regulation of encephalitogenic T cell differentiation and inflammation. Clin Immunol 145(2):122–132

    Article  CAS  PubMed  Google Scholar 

  • Oh K, Seo MW, Lee GY, Byoun O-J, Kang H-R, Cho S-H, Lee D-S (2013) Airway epithelial cells initiate the allergen response through transglutaminase 2 by inducing IL-33 expression and a subsequent Th2 response. Respir Res 14:35

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Olsen KC, Sapinoro RE, Kottmann RM, Kulkarni AA, Iismaa SE, Johnson GV, Thatcher TH, Phipps RP, Sime PJ (2011) Transglutaminase 2 and its role in pulmonary fibrosis. Am J Respir Crit Care Med 184(6):699–707

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Orlandi A, Oliva F, Taurisano G, Candi E, Di Lascio A, Melino G, Spagnoli LG, Tarantino U (2009) Transglutaminase-2 differently regulates cartilage destruction and osteophyte formation in a surgical model of osteoarthritis. Amino Acids 36(4):755–763

    Article  CAS  PubMed  Google Scholar 

  • Pease S, Saunders TL (2011) Advanced protocols for animal transgenesis. An ISTT manual, Springer protocols. Springer, Berlin/Heidelberg

    Google Scholar 

  • Petersen-Jones HG, Johnson KB, Hitomi K, Tykocki NR, Thompson JM, Watts SW (2015) Transglutaminase activity is decreased in large arteries from hypertensive rats, compared to normotensive controls. Am J Physiol Heart Circ Physiol 308(6):H592–H602

    Article  CAS  PubMed  Google Scholar 

  • Pistea A, Bakker EN, Spaan JA, Hardeman MR, van Rooijen N, VanBavel E (2008) Small artery remodeling and erythrocyte deformability in L-NAME-induced hypertension: role of transglutaminases. J Vasc Res 45(1):10–18

    Article  CAS  PubMed  Google Scholar 

  • Plump AS, Smith JD, Hayek T, Aalto-Setälä K, Walsh A, Verstuyft JG, Rubin EM, Breslow JL (1992) Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71(2):343–353

    Article  CAS  PubMed  Google Scholar 

  • Popov Y, Sverdlov DY, Sharma AK, Bhaskar KR, Li S, Freitag TL, Lee J, Dieterich W, Melino G, Schuppan D (2011) Tissue transglutaminase does not affect fibrotic matrix stability or regression of liver fibrosis in mice. Gastroenterology 140(5):1642–1652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Porzio O, Massa O, Cunsolo V, Colombo C, Malaponti M, Bertuzzi F, Hansen T, Johansen A, Pedersen O, Meschi F, Terrinoni A, Melino G, Federici M, Decarlo N, Menicagli M, Campani D, Marchetti P, Ferdaoussi M, Froguel P, Federici G, Vaxillaire M, Barbetti F (2007) Missense mutations in the TGM2 gene encoding transglutaminase 2 are found in patients with early-onset type 2 diabetes. Hum Mutat 28(11):1150

    Article  CAS  PubMed  Google Scholar 

  • Quasnichka H, Slater SC, Beeching CA, Boehm M, Sala-Newby GB, George SJ (2006) Regulation of smooth muscle cell proliferation by beta-catenin/T-cell factor signaling involves modulation of cyclin D1 and p21 expression. Circ Res 99(12):1329–1337

    Article  CAS  PubMed  Google Scholar 

  • Rahman A, Fazal F (2011) Blocking NF-κB. An inflammatory issue. Proc Am Thorac Soc 8(6):497–503

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rockenstein E, Mallory M, Hashimoto M, Song D, Shults CW, Lang I, Masliah E (2002) Differential neuropathological alterations in transgenic mice expressing alpha-synuclein from the platelet-derived growth factor and Thy-1 promoters. J Neurosci Res 68(5):568–578

    Article  CAS  PubMed  Google Scholar 

  • Rose DM, Sydlaske AD, Agha-Babakhani A, Johnson K, Terkeltaub R (2006) Transglutaminase 2 limits murine peritoneal acute gout-like inflammation by regulating macrophage clearance of apoptotic neutrophils. Arthritis Rheum 54(10):3363–3371

    Article  CAS  PubMed  Google Scholar 

  • Rossin F, D’Eletto M, Macdonald D, Farrace MG, Piacentini M (2012) TG2 transamidating activity acts as a reostat controlling the interplay between apoptosis and autophagy. Amino Acids 42(5):1793–1802

    Article  CAS  PubMed  Google Scholar 

  • Rossin F, D’Eletto M, Falasca L, Sepe S, Cocco S, Fimia GM, Campanella M, Mastroberardino PG, Farrace MG, Piacentini M (2014) Transglutaminase 2 ablation leads to mitophagy impairment associated with a metabolic shift towards aerobic glycolysis. Cell Death Differ 22(3):408–418

    Article  PubMed  CAS  Google Scholar 

  • Salter NW, Ande SR, Nguyen HK, Nyomba BL, Mishra S (2012) Functional characterization of naturally occurring transglutaminase 2 mutants implicated in early-onset type 2 diabetes. J Mol Endocrinol 48(3):203–216

    Article  CAS  PubMed  Google Scholar 

  • Santhanam L, Tuday EC, Webb AK, Dowzicky P, Kim JH, Oh YJ, Sikka G, Kuo M, Halushka MK, Macgregor AM, Dunn J, Gutbrod S, Yin D, Shoukas A, Nyhan D, Flavahan NA, Belkin AM, Berkowitz DE (2010) Decreased S-nitrosylation of tissue transglutaminase contributes to age-related increases in vascular stiffness. Circ Res 107(1):117–125

    Article  CAS  PubMed  Google Scholar 

  • Sarang Z, Molnar P, Nemeth T, Gomba S, Kardon T, Melino G, Cotecchia S, Fesus L, Szondy Z (2005) Tissue transglutaminase (TG2) acting as G protein protects hepatocytes against Fas-mediated cell death in mice. Hepatology 42(3):578–587

    Article  CAS  PubMed  Google Scholar 

  • Sarang Z, Mádi A, Koy C, Varga S, Glocker MO, Ucker DS, Kuchay S, Chishti AH, Melino G, Fésüs L, Szondy Z (2007) Tissue transglutaminase (TG2) facilitates phosphatidylserine exposure and calpain activity in calcium-induced death of erythrocytes. Cell Death Differ 14(10):1842–1844

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sarang Z, Tóth B, Balajthy Z, Köröskényi K, Garabuczi E, Fésüs L, Szondy Z (2009) Some lessons from the tissue transglutaminase knockout mouse. Amino Acids 36(4):625–631

    Article  CAS  PubMed  Google Scholar 

  • Sarang Z, Köröskényi K, Pallai A, Duró E, Melino G, Griffin M, Fésüs L, Szondy Z (2011) Transglutaminase 2 null macrophages respond to lipopolysaccharide stimulation by elevated proinflammatory cytokine production due to an enhanced αvβ3 integrin-induced Src tyrosine kinase signaling. Immunol Lett 138(1):71–78

    Article  CAS  PubMed  Google Scholar 

  • Scarpellini A, Huang L, Burhan I, Schroeder N, Funck M, Johnson TS, Verderio EA (2014) Syndecan-4 knockout leads to reduced extracellular transglutaminase-2 and protects against tubulointerstitial fibrosis. J Am Soc Nephrol 25(5):1013–1027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shin DM, Jeon JH, Kim CW, Cho SY, Lee HJ, Jang GY, Jeong EM, Lee DS, Kang JH, Melino G, Park SC, Kim IG (2008) TGFbeta mediates activation of transglutaminase 2 in response to oxidative stress that leads to protein aggregation. FASEB J 22(7):2498–2507

    Article  CAS  PubMed  Google Scholar 

  • Shweke N, Boulos N, Jouanneau C, Vandermeersch S, Melino G, Dussaule JC, Chatziantoniou C, Ronco P, Boffa JJ (2008) Tissue transglutaminase contributes to interstitial renal fibrosis by favoring accumulation of fibrillar collagen through TGF-beta activation and cell infiltration. Am J Pathol 173(3):631–642

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Silva AJ, Simpson EM, Takahashi JS, Lipp H-P, Nakanishi S, Wehner JM, Giese KP, Tully T, Abel T, Chapman PF, Fox K, Grant S, Itohara S, Lathe R, Mayford M, McNamara JO, Moriis RJ, Picciotto M, Roder J, Shin H-S, Slesinger PA, Storm DR, Stryker MP, Tonegawa S, Wang Y, Wolfer DP (1997) Mutant mice and neuroscience: recommendations concerning genetic background. Banbury conference on genetic background in mice. Neuron 19(4):755–759

    Article  Google Scholar 

  • Small K, Feng JF, Lorenz J, Donnelly ET, Yu A, Im MJ, Dorn GW 2nd, Liggett SB (1999) Cardiac specific overexpression of transglutaminase II (Gh) results in a unique hypertrophy phenotype independent of phospholipase C activation. J Biol Chem 274(30):21291–21296

    Article  CAS  PubMed  Google Scholar 

  • Steppan J, Sikka G, Jandu S, Barodka V, Halushka MK, Flavahan NA, Belkin AM, Nyhan D, Butlin M, Avolio A, Berkowitz DE, Santhanam L (2014) Exercise, vascular stiffness, and tissue transglutaminase. J Am Heart Assoc 3(2):e000599

    Article  PubMed Central  PubMed  Google Scholar 

  • Stevens JC, Banks GT, Festing MF, Fisher EM (2007) Quiet mutations in inbred strains of mice. Trends Mol Med 13(12):512–519

    Article  CAS  PubMed  Google Scholar 

  • Strnad P, Harada M, Siegel M, Terkeltaub RA, Graham RM, Khosla C, Omary MB (2007) Transglutaminase 2 regulates Mallory body inclusion formation and injury-associated liver enlargement. Gastroenterology 132(4):1515–1526

    Article  CAS  PubMed  Google Scholar 

  • Szondy Z, Sarang Z, Molnár P, Németh T, Piacentini M, Mastroberardino PG, Falasca L, Aeschlimann D, Kovács J, Kiss I, Szegezdi E, Lakos G, Rajnavölgyi E, Birckbichler PJ, Melino G, Fésüs L (2003) Transglutaminase 2−/− mice reveal a phagocytosis-associated crosstalk between macrophages and apoptotic cells. Proc Natl Acad Sci U S A 100(13):7812–7817

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Szondy Z, Mastroberardino PG, Váradi J, Farrace MG, Nagy N, Bak I, Viti I, Wieckowski MR, Melino G, Rizzuto R, Tósaki A, Fesus L, Piacentini M (2006) Tissue transglutaminase (TG2) protects cardiomyocytes against ischemia/reperfusion injury by regulating ATP synthesis. Cell Death Differ 13(10):1827–1829

    Article  CAS  PubMed  Google Scholar 

  • Taft RA, Davisson M, Wiles MV (2006) Know thy mouse. Trends Genet 22(12):649–653

    Article  CAS  PubMed  Google Scholar 

  • Tarantino U, Oliva F, Taurisano G, Orlandi A, Pietroni V, Candi E, Melino G, Maffulli N (2009) FXIIIA and TGF-β over-expression produces normal musculo-skeletal phenotype in TG2−/− mice. Amino Acids 36(4):679–684

    Article  CAS  PubMed  Google Scholar 

  • Tatsukawa H, Fukaya Y, Frampton G, Martinez-Fuentes A, Suzuki K, Kuo TF, Nagatsuma K, Shimokado K, Okuno M, Wu J, Iismaa S, Matsuura T, Tsukamoto H, Zern MA, Graham RM, Kojima S (2009) Role of transglutaminase 2 in liver injury via cross-linking and silencing of transcription factor Sp1. Gastroenterology 135(5):1783–1795

    Article  CAS  Google Scholar 

  • Thorp E, Tabas I (2009) Mechanisms and consequences of efferocytosis in advanced atherosclerosis. J Leukoc Biol 86(5):1089–1095

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tong L, Png E, AiHua H, Yong SS, Yeo HL, Riau A, Mendoz E, Chaurasia SS, Lim CT, Yiu TW, Iismaa SE (2013) Molecular mechanism of transglutaminase-2 in corneal epithelial migration and adhesion. Biochim Biophys Acta 1833(6):1304–1315

    Article  CAS  PubMed  Google Scholar 

  • Tóth B, Garabuczi E, Sarang Z, Vereb G, Vámosi G, Aeschlimann D, Blaskó B, Bécsi B, Erdõdi F, Lacy-Hulbert A, Zhang A, Falasca L, Birge RB, Balajthy Z, Melino G, Fésüs L, Szondy Z (2009a) Transglutaminase 2 is needed for the formation of an efficient phagocyte portal in macrophages engulfing apoptotic cells. J Immunol 182(4):2084–2092

    Article  PubMed  CAS  Google Scholar 

  • Tóth B, Sarang Z, Vereb G, Zhang A, Tanaka S, Melino G, Fésüs L, Szondy Z (2009b) Over-expression of integrin beta3 can partially overcome the defect of integrin beta3 signaling in transglutaminase 2 null macrophages. Immunol Lett 126(1–2):22–28

    Article  PubMed  CAS  Google Scholar 

  • Tucholski J, Roth KA, Johnson GV (2006) Tissue transglutaminase overexpression in the brain potentiates calcium-induced hippocampal damage. J Neurochem 97(2):582–594

    Article  CAS  PubMed  Google Scholar 

  • van den Akker J, Tuna BG, Pistea A, Sleutel AJ, Bakker EN, van Bavel E (2012) Vascular smooth muscle cells remodel collagen matrices by long-distance action and anisotropic interaction. Med Biol Eng Comput 50(7):701–715

    Article  PubMed Central  PubMed  Google Scholar 

  • Van Herck JL, Schrijvers DM, De Meyer GR, Martinet W, Van Hove CE, Bult H, Vrints CJ, Herman AG (2010) Transglutaminase 2 deficiency decreases plaque fibrosis and increases plaque inflammation in apolipoprotein-E-deficient mice. J Vasc Res 47(3):231–240

    Article  PubMed  CAS  Google Scholar 

  • Van Strien ME, Baron W, Bakker EN, Bauer J, Bol JG, Brevé JJ, Binnekade R, Van Der Laarse WJ, Drukarch B, Van Dam AM (2011) Tissue transglutaminase activity is involved in the differentiation of oligodendrocyte precursor cells into myelin-forming oligodendrocytes during CNS remyelination. Glia 59(11):1622–1634

    Article  PubMed  Google Scholar 

  • Williams H, Pease RJ, Newell LM, Cordell PA, Graham RM, Kearney MT, Jackson CL, Grant PJ (2010) Effect of transglutaminase 2 (TG2) deficiency on atherosclerotic plaque stability in the apolipoprotein E deficient mouse. Atherosclerosis 210(1):94–99

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu L, Begum S, Hearn JD, Hynes RO (2006) GPR56, an atypical G protein-coupled receptor, binds tissue transglutaminase, TG2, and inhibits melanoma tumor growth and metastasis. Proc Natl Acad Sci U S A 103(24):9023–9028

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang L, Friedland S, Corson N, Xu L (2014) GPR56 inhibits melanoma growth by internalizing and degrading its ligand TG2. Cancer Res 74(4):1022–1031

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Z, Vezza R, Plappert T, McNamara P, Lawson JA, Austin S, Pratico D, Sutton MS-J, FitzGerald GA (2003) COX-2 dependent cardiac failure in Gh/tTG transgenic mice. Circ Res 92(10):1153–1161

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siiri E. Iismaa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Iismaa, S.E. (2015). Insights into Transglutaminase 2 Function Gained from Genetically Modified Animal Models. In: Hitomi, K., Kojima, S., Fesus, L. (eds) Transglutaminases. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55825-5_4

Download citation

Publish with us

Policies and ethics