Skip to main content

Abstract

Tissue resection or perfusion fixation in conventional procedures causes ischemic or anoxic artifacts. In vivo cryotechnique (IVCT) has been used to overcome these problems and study the distribution of soluble molecules without ischemic/anoxic artifacts at high time resolution. There are some limitations of IVCT; the target organs of living small animals need to be exposed, and tissues adjacent to the target organs are inevitably damaged by poured isopentane-propane cryogens. A new cryotechnique, “cryobiopsy,” enables acquisition of tissue specimens of larger animals without anoxia/ischemia with technical advantages similar to those of IVCT. Live-imaging techniques could be complemented by IVCT and cryobiopsy, and cryofixation can preserve all components in frozen tissue specimens. Thus, IVCT and cryobiopsy followed by freeze substitution for light or electron microscopy will provide more precise morphofunctional information in vivo on tissue sections, and also they can be combined with other analytical methods, such as Raman microscopy, freeze-fracture replication, and X-ray microanalyses. The merits of IVCT and cryobiopsy will be underscored in the applications to other microscopic fields and experimental animal studies in clinical medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chan FL, Inoue S (1994) Lamina lucida of basement membrane: an artefact. Microsc Res Tech 28(1):48–59

    Article  CAS  PubMed  Google Scholar 

  2. Hippe-Sanwald S (1993) Impact of freeze substitution on biological electron microscopy. Microsc Res Tech 24(5):400–422

    Article  CAS  PubMed  Google Scholar 

  3. Kellenberger E, Johansen R, Maeder M, Bohrmann B, Stauffer E, Villiger W (1992) Artefacts and morphological changes during chemical fixation. J Microsc 168(Pt 2):181–201

    Article  CAS  PubMed  Google Scholar 

  4. Shiurba R (2001) Freeze-substitution: origins and applications. Int Rev Cytol 206:45–96

    Article  CAS  PubMed  Google Scholar 

  5. Zea-Aragon Z, Terada N, Ohno N, Fujii Y, Baba T, Ohno S (2004) Effects of anoxia on serum immunoglobulin and albumin leakage through blood–brain barrier in mouse cerebellum as revealed by cryotechniques. J Neurosci Methods 138(1–2):89–95

    Article  CAS  PubMed  Google Scholar 

  6. Stephens DJ, Allan VJ (2003) Light microscopy techniques for live cell imaging. Science 300(5616):82–86

    Article  CAS  PubMed  Google Scholar 

  7. Selvin PR (2000) The renaissance of fluorescence resonance energy transfer. Nat Struct Biol 7(9):730–734

    Article  CAS  PubMed  Google Scholar 

  8. Fricker MD, Meyer AJ (2001) Confocal imaging of metabolism in vivo: pitfalls and possibilities. J Exp Bot 52(356):631–640

    Article  CAS  PubMed  Google Scholar 

  9. Molitoris BA, Sandoval RM (2005) Intravital multiphoton microscopy of dynamic renal processes. Am J Physiol Renal Physiol 288(6):F1084–F1089

    Article  CAS  PubMed  Google Scholar 

  10. Tauer U (2002) Advantages and risks of multiphoton microscopy in physiology. Exp Physiol 87(6):709–714

    Article  PubMed  Google Scholar 

  11. Ohno N, Terada N, Fujii Y, Baba T, Ohno S (2004) “In vivo cryotechnique” for paradigm shift to “living morphology” of animal organs. Biomed Rev 15:1–19

    Article  Google Scholar 

  12. Ohno S, Terada N, Fujii Y, Ueda H, Takayama I (1996) Dynamic structure of glomerular capillary loop as revealed by an in vivo cryotechnique. Virchows Arch 427(5):519–527

    Article  CAS  PubMed  Google Scholar 

  13. Ohno N, Terada N, Ohno S (2004) Advanced application of the in vivo cryotechnique to immunohistochemistry for animal organs. Acta Histochem Cytochem 37:357–364

    Article  Google Scholar 

  14. Ohguro H, Rudnicka-Nawrot M, Buczylko J, Zhao X, Taylor JA, Walsh KA et al (1996) Structural and enzymatic aspects of rhodopsin phosphorylation. J Biol Chem 271(9):5215–5224

    Article  CAS  PubMed  Google Scholar 

  15. Ohno S, Kato Y, Xiang T, Terada N, Takayama I, Fujii Y et al (2001) Ultrastructural study of mouse renal glomeruli under various hemodynamic conditions by an “in vivo cryotechnique”. Ital J Anat Embryol 106(2 Suppl 1):431–438

    CAS  PubMed  Google Scholar 

  16. Furukawa T, Ohno S, Oguchi H, Hora K, Tokunaga S, Furuta S (1991) Morphometric study of glomerular slit diaphragms fixed by rapid-freezing and freeze-substitution. Kidney Int 40(4):621–624

    Article  CAS  PubMed  Google Scholar 

  17. Fujii Y, Ohno N, Li Z, Terada N, Baba T, Ohno S (2006) Morphological and histochemical analyses of living mouse livers by new ‘cryobiopsy’ technique. J Electron Microsc (Tokyo) 55(2):113–122

    Article  CAS  Google Scholar 

  18. Ohno N, Terada N, Saitoh S, Zhou H, Fujii Y, Ohno S (2007) Recent development of in vivo cryotechnique to cryobiopsy for living animals. Histol Histopathol 22(11):1281–1290

    CAS  PubMed  Google Scholar 

  19. Li Z, Ohno N, Terada N, Ohno S (2006) Immunolocalization of serum proteins in living mouse glomeruli under various hemodynamic conditions by “in vivo cryotechnique”. Histochem Cell Biol 126(3):399–406

    Article  CAS  PubMed  Google Scholar 

  20. Li Z, Terada N, Ohno N, Ohno S (2005) Immunohistochemical analyses on albumin and immunoglobulin in acute hypertensive mouse kidneys by “in vivo cryotechnique”. Histol Histopathol 20(3):807–816

    CAS  PubMed  Google Scholar 

  21. Ohno S, Terada N, Ohno N, Fuji Y, Baba T (2006) “In vivo cryotechnique” for examination of living animal organs, further developing to “cryobiopsy” for humans. Recent Res Devel Mol Cell Biol 6:65–90

    Google Scholar 

  22. Zhou H, Ohno N, Terada N, Saitoh S, Fujii Y, Ohno S (2007) Involvement of follicular basement membrane and vascular endothelium in blood follicle barrier formation of mice revealed by ‘in vivo cryotechnique’. Reproduction 134(2):307–317

    Article  CAS  PubMed  Google Scholar 

  23. Ohno N, Terada N, Ohno S (2006) Histochemical analyses of living mouse liver under different hemodynamic conditions by “in vivo cryotechnique”. Histochem Cell Biol 126(3):389–398

    Article  CAS  PubMed  Google Scholar 

  24. Moreira JE, Dodane V, Reese TS (1998) Immunoelectronmicroscopy of soluble and membrane proteins with a sensitive postembedding method. J Histochem Cytochem 46(7):847–854

    Article  CAS  PubMed  Google Scholar 

  25. von Schack ML, Fakan S, Villiger W, Muller M (1993) Cryofixation and cryosubstitution: a useful alternative in the analyses of cellular fine structure. Eur J Histochem 37(1):5–18

    Google Scholar 

  26. Melan MA, Sluder G (1992) Redistribution and differential extraction of soluble proteins in permeabilized cultured cells. Implications for immunofluorescence microscopy. J Cell Sci 101(Pt 4):731–743

    PubMed  Google Scholar 

  27. Yamashita S, Yasuda K (1992) Freeze-substitution fixation for immunohistochemistry at the light microscopic level: effects of solvent and chemical fixatives. Acta Histochem Cytochem 25:641–650

    Article  CAS  Google Scholar 

  28. Ohno N, Terada N, Murata S, Katoh R, Ohno S (2005) Application of cryotechniques with freeze-substitution for the immunohistochemical demonstration of intranuclear pCREB and chromosome territory. J Histochem Cytochem 53(1):55–62

    Article  CAS  PubMed  Google Scholar 

  29. Terada N, Ohno N, Li Z, Fujii Y, Baba T, Ohno S (2006) Application of in vivo cryotechnique to the examination of cells and tissues in living animal organs. Histol Histopathol 21(3):265–272

    CAS  PubMed  Google Scholar 

  30. Hayat M (1989) Chemical fixation. Principles and techniques of electron microscopy. Macmillan Press, London, pp 1–78

    Google Scholar 

  31. Terada N, Ohno N, Ohguro H, Li Z, Ohno S (2006) Immunohistochemical detection of phosphorylated rhodopsin in light-exposed retina of living mouse with in vivo cryotechnique. J Histochem Cytochem 54(4):479–486

    Article  CAS  PubMed  Google Scholar 

  32. Yu Y, Leng CG, Terada N, Ohno S (1998) Scanning electron microscopic study of the renal glomerulus by an in vivo cryotechnique combined with freeze-substitution. J Anat 192(Pt 4):595–603

    Article  PubMed Central  PubMed  Google Scholar 

  33. Terada N, Kato Y, Fuji Y, Ueda H, Baba T, Ohno S (1998) Scanning electron microscopic study of flowing erythrocytes in hepatic sinusoids as revealed by ‘in vivo cryotechnique’. J Electron Microsc (Tokyo) 47(1):67–72

    Article  CAS  Google Scholar 

  34. Achen MG, McColl BK, Stacker SA (2005) Focus on lymphangiogenesis in tumor metastasis. Cancer Cell 7(2):121–127

    Article  CAS  PubMed  Google Scholar 

  35. Emanueli C, Madeddu P (2005) Changing the logic of therapeutic angiogenesis for ischemic disease. Trends Mol Med 11(5):207–216

    Article  CAS  PubMed  Google Scholar 

  36. Gariano RF, Gardner TW (2005) Retinal angiogenesis in development and disease. Nature 438(7070):960–966

    Article  CAS  PubMed  Google Scholar 

  37. McDonald DM, Choyke PL (2003) Imaging of angiogenesis: from microscope to clinic. Nat Med 9(6):713–725

    Article  CAS  PubMed  Google Scholar 

  38. Terada N, Ohno N, Li Z, Fujii Y, Baba T, Ohno S (2005) Detection of injected fluorescence-conjugated IgG in living mouse organs using “in vivo cryotechnique” with freeze-substitution. Microsc Res Tech 66(4):173–178

    Article  CAS  PubMed  Google Scholar 

  39. Ohno N, Terada N, Bai Y, Saitoh S, Nakazawa T, Nakamura N et al (2008) Application of cryobiopsy to morphological and immunohistochemical analyses of xenografted human lung cancer tissues and functional blood vessels. Cancer 113(5):1068–1079

    Article  PubMed  Google Scholar 

  40. Saitoh Y, Terada N, Saitoh S, Ohno N, Jin T, Ohno S (2012) Histochemical analyses and quantum dot imaging of microvascular blood flow with pulmonary edema in living mouse lungs by “in vivo cryotechnique”. Histochem Cell Biol 137(2):137–151

    Article  CAS  PubMed  Google Scholar 

  41. Terada N, Ohno N, Fujii Y, Baba T, Ohno S (2006) Dynamic study of intramembranous particles in human fresh erythrocytes using an “in vitro cryotechnique”. Microsc Res Tech 69(4):291–295

    Article  PubMed  Google Scholar 

  42. Plattner H, Bachmann L (1982) Cryofixation: a tool in biological ultrastructural research. Int Rev Cytol 79:237–304

    Article  CAS  PubMed  Google Scholar 

  43. Giddings TH (2003) Freeze-substitution protocols for improved visualization of membranes in high-pressure frozen samples. J Microsc 212(Pt 1):53–61

    Article  CAS  PubMed  Google Scholar 

  44. Li Z, Ohno N, Terada N, Zhou D, Yoshimura A, Ohno S (2006) Application of periodic acid-Schiff fluorescence emission for immunohistochemistry of living mouse renal glomeruli by an “in vivo cryotechnique”. Arch Histol Cytol 69(3):147–161

    Article  CAS  PubMed  Google Scholar 

  45. Shiurba RA, Spooner ET, Ishiguro K, Takahashi M, Yoshida R, Wheelock TR et al (1998) Immunocytochemistry of formalin-fixed human brain tissues: microwave irradiation of free-floating sections. Brain Res Brain Res Protoc 2(2):109–119

    Article  CAS  PubMed  Google Scholar 

  46. Takayama I, Terada N, Baba T, Ueda H, Kato Y, Fujii Y et al (1999) “In vivo cryotechnique” in combination with replica immunoelectron microscopy for caveolin in smooth muscle cells. Histochem Cell Biol 112(6):443–445

    Article  CAS  PubMed  Google Scholar 

  47. Terada N, Ohno N, Saitoh S, Fujii Y, Ohguro H, Ohno S (2007) Raman microscopy of freeze-dried mouse eyeball-slice in conjunction with the “in vivo cryotechnique”. Microsc Res Tech 70(7):634–639

    Article  PubMed  Google Scholar 

  48. Saitoh Y, Terada N, Saitoh S, Ohno N, Fujii Y, Ohno S (2010) Histochemical approach of cryobiopsy for glycogen distribution in living mouse livers under fasting and local circulation loss conditions. Histochem Cell Biol 133(2):229–239

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuhiko Ohno M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Ohno, N., Terada, N., Ohno, S. (2016). Recent Development of In Vivo Cryotechnique to Cryobiopsy for Living Animals. In: Ohno, S., Ohno, N., Terada, N. (eds) In Vivo Cryotechnique in Biomedical Research and Application for Bioimaging of Living Animal Organs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55723-4_48

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55723-4_48

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55722-7

  • Online ISBN: 978-4-431-55723-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics