Skip to main content

Biomarker

  • Chapter
  • First Online:
Systemic Sclerosis

Abstract

Clinical manifestation, disease progress, and prognosis are heterogeneous in each patient with systemic sclerosis (SSc). Therefore, biomarkers that can estimate these matters are essential for clinical practice. Although SSc-specific autoantibodies are very useful markers, other biomarkers have not been established. Regarding potential biomarkers of fibrosis, some cytokines, chemokines, adhesion molecules including connective tissue growth factor, interleukin-6, CCL2, CXCL4, and circulating intercellular adhesion molecule-1 have been reported. The glycoprotein Krebs von den Lungen-6 and surfactant protein-D are currently the most reliable serum biomarkers of interstitial lung diseases of SSc. Serum or plasma levels of brain natriuretic peptide and N-terminal pro-brain natriuretic peptide have been used as useful biomarkers for SSc-related pulmonary arterial hypertension, although these are not specific for pulmonary arterial hypertension. It has been reported that interferon-inducible chemokine score correlated with the Medsger Severity Index, particularly with the severity of the skin, muscle, and lung involvement. Further large multicenter prospective studies will be needed to identify critical biomarkers of SSc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khanna D, Clements PJ, Furst DE, Chon Y, Elashoff R, Roth MD, et al. Correlation of the degree of dyspnea with health-related quality of life, functional abilities, and diffusing capacity for carbon monoxide in patients with systemic sclerosis and active alveolitis: results from the Scleroderma Lung Study. Arthritis Rheum. 2005;52(2):592–600.

    Article  PubMed  Google Scholar 

  2. Biomarkers Definitions Working G. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89–95.

    Article  Google Scholar 

  3. Castro SV, Jimenez SA. Biomarkers in systemic sclerosis. Biomark Med. 2010;4(1):133–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Hummers LK. The current state of biomarkers in systemic sclerosis. Curr Rheumatol Rep. 2010;12(1):34–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Moinzadeh P, Denton CP, Abraham D, Ong V, Hunzelmann N, Eckes B, et al. Biomarkers for skin involvement and fibrotic activity in scleroderma. J Eur Acad Dermatol Venereol: JEADV. 2012;26(3):267–76.

    Article  CAS  PubMed  Google Scholar 

  6. Castelino FV, Varga J. Current status of systemic sclerosis biomarkers: applications for diagnosis, management and drug development. Expert Rev Clin Immunol. 2013;9(11):1077–90.

    Article  CAS  PubMed  Google Scholar 

  7. Balanescu P, Ladaru A, Balanescu E, Baicus C, Dan GA. Systemic sclerosis biomarkers discovered using mass-spectrometry-based proteomics: a systematic review. Biomarkers. 2014;19(5):345–55.

    Article  CAS  PubMed  Google Scholar 

  8. Clements P, Lachenbrush P, Seibold J, White B, Weiner S, Martin R, et al. Inter and intraobserver variability of total skin thickness score (modified Rodnan TSS) in systemic sclerosis. J Rheumatol. 1995;22:1281–5.

    CAS  PubMed  Google Scholar 

  9. Czirjak L, Nagy Z, Aringer M, Riemekasten G, Matucci-Cerinic M, Furst DE, et al. The EUSTAR model for teaching and implementing the modified Rodnan skin score in systemic sclerosis. Ann Rheum Dis. 2007;66(7):966–9.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Hunzelmann N, Risteli J, Risteli L, Sacher C, Vancheeswaran R, Black C, et al. Circulating type I collagen degradation products: a new serum marker for clinical severity in patients with scleroderma? Br J Dermatol. 1998;139(6):1020–5.

    Article  CAS  PubMed  Google Scholar 

  11. Allanore Y, Borderie D, Lemarechal H, Cherruau B, Ekindjian OG, Kahan A. Correlation of serum collagen I carboxyterminal telopeptide concentrations with cutaneous and pulmonary involvement in systemic sclerosis. J Rheumatol. 2003;30(1):68–73.

    CAS  PubMed  Google Scholar 

  12. Dziadzio M, Smith RE, Abraham DJ, Stratton RJ, Gabrielli A, Black CM, et al. Serological assessment of type I collagen burden in scleroderma spectrum disorders: a systematic review. Clin Exp Rheumatol. 2004;22(3):356–67.

    CAS  PubMed  Google Scholar 

  13. Black CM, McWhirter A, Harrison NK, Kirk JM, Laurent GJ. Serum type III procollagen peptide concentrations in systemic sclerosis and Raynaud’s phenomenon: relationship to disease activity and duration. Br J Rheumatol. 1989;28(2):98–103.

    Article  CAS  PubMed  Google Scholar 

  14. Diot E, Diot P, Valat C, Boissinot E, Asquier E, Lemarie E, et al. Predictive value of serum III procollagen for diagnosis of pulmonary involvement in patients with scleroderma. Eur Respir J. 1995;8(9):1559–65.

    CAS  PubMed  Google Scholar 

  15. Nagy Z, Czirjak L. Increased levels of amino terminal propeptide of type III procollagen are an unfavourable predictor of survival in systemic sclerosis. Clin Exp Rheumatol. 2005;23(2):165–72.

    CAS  PubMed  Google Scholar 

  16. Ra HJ, Parks WC. Control of matrix metalloproteinase catalytic activity. Matrix Biol: J Int Soc Matrix Biol. 2007;26(8):587–96.

    Article  CAS  Google Scholar 

  17. Kim WU, Min SY, Cho ML, Hong KH, Shin YJ, Park SH, et al. Elevated matrix metalloproteinase-9 in patients with systemic sclerosis. Arthritis Res Ther. 2005;7(1):R71–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Pardo A, Selman M. Matrix metalloproteases in aberrant fibrotic tissue remodeling. Proc Am Thorac Soc. 2006;3(4):383–8.

    Article  CAS  PubMed  Google Scholar 

  19. Serrati S, Cinelli M, Margheri F, Guiducci S, Del Rosso A, Pucci M, et al. Systemic sclerosis fibroblasts inhibit in vitro angiogenesis by MMP-12-dependent cleavage of the endothelial cell urokinase receptor. J Pathol. 2006;210(2):240–8.

    Article  CAS  PubMed  Google Scholar 

  20. Manetti M, Guiducci S, Romano E, Bellando-Randone S, Conforti ML, Ibba-Manneschi L, et al. Increased serum levels and tissue expression of matrix metalloproteinase-12 in patients with systemic sclerosis: correlation with severity of skin and pulmonary fibrosis and vascular damage. Ann Rheum Dis. 2012;71(6):1064–72.

    Article  CAS  PubMed  Google Scholar 

  21. Varga J, Abraham D. Systemic sclerosis: a prototypic multisystem fibrotic disorder. J Clin Invest. 2007;117(3):557–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Moustakas A, Heldin CH. Non-Smad TGF-beta signals. J Cell Sci. 2005;118(Pt 16):3573–84.

    Article  CAS  PubMed  Google Scholar 

  23. Whitfield ML, Finlay DR, Murray JI, Troyanskaya OG, Chi JT, Pergamenschikov A, et al. Systemic and cell type-specific gene expression patterns in scleroderma skin. Proc Natl Acad Sci U S A. 2003;100(21):12319–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Sargent JL, Milano A, Bhattacharyya S, Varga J, Connolly MK, Chang HY, et al. A TGFbeta-responsive gene signature is associated with a subset of diffuse scleroderma with increased disease severity. J Invest Dermatol. 2010;130(3):694–705.

    Article  CAS  PubMed  Google Scholar 

  25. Denton CP, Merkel PA, Furst DE, Khanna D, Emery P, Hsu VM, et al. Recombinant human anti-transforming growth factor beta1 antibody therapy in systemic sclerosis: a multicenter, randomized, placebo-controlled phase I/II trial of CAT-192. Arthritis Rheum. 2007;56(1):323–33.

    Article  CAS  PubMed  Google Scholar 

  26. Dziadzio M, Smith RE, Abraham DJ, Black CM, Denton CP. Circulating levels of active transforming growth factor beta1 are reduced in diffuse cutaneous systemic sclerosis and correlate inversely with the modified Rodnan skin score. Rheumatology (Oxford). 2005;44(12):1518–24.

    Article  CAS  Google Scholar 

  27. Krieg T, Takehara K. Skin disease: a cardinal feature of systemic sclerosis. Rheumatology (Oxford). 2009;48 Suppl 3:iii14–8.

    Google Scholar 

  28. Takehara K. Hypothesis: pathogenesis of systemic sclerosis. J Rheumatol. 2003;30(4):755–9.

    PubMed  Google Scholar 

  29. Sato S, Nagaoka T, Hasegawa M, Tamatani T, Nakanishi T, Takigawa M, et al. Serum levels of connective tissue growth factor are elevated in patients with systemic sclerosis: association with extent of skin sclerosis and severity of pulmonary fibrosis. J Rheumatol. 2000;27(1):149–54.

    CAS  PubMed  Google Scholar 

  30. Dziadzio M, Usinger W, Leask A, Abraham D, Black CM, Denton C, et al. N-terminal connective tissue growth factor is a marker of the fibrotic phenotype in scleroderma. QJM. 2005;98(7):485–92.

    Article  CAS  PubMed  Google Scholar 

  31. Khan K, Xu S, Nihtyanova S, Derrett-Smith E, Abraham D, Denton CP, et al. Clinical and pathological significance of interleukin 6 overexpression in systemic sclerosis. Ann Rheum Dis. 2012;71(7):1235–42.

    Article  CAS  PubMed  Google Scholar 

  32. Sato S, Hasegawa M, Takehara K. Serum levels of interleukin-6 and interleukin-10 correlate with total skin thickness score in patients with systemic sclerosis. J Dermatol Sci. 2001;27(2):140–6.

    Article  CAS  PubMed  Google Scholar 

  33. De Lauretis A, Sestini P, Pantelidis P, Hoyles R, Hansell DM, Goh NS, et al. Serum interleukin 6 is predictive of early functional decline and mortality in interstitial lung disease associated with systemic sclerosis. J Rheumatol. 2013;40(4):435–46.

    Article  PubMed  CAS  Google Scholar 

  34. Gu L, Tseng S, Horner RM, Tam C, Loda M, Rollins BJ. Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature. 2000;404(6776):407–11.

    Article  CAS  PubMed  Google Scholar 

  35. Gharaee-Kermani M, Denholm EM, Phan SH. Costimulation of fibroblast collagen and transforming growth factor beta1 gene expression by monocyte chemoattractant protein-1 via specific receptors. J Biol Chem. 1996;271(30):17779–84.

    Article  CAS  PubMed  Google Scholar 

  36. Carulli MT, Ong VH, Ponticos M, Shiwen X, Abraham DJ, Black CM, et al. Chemokine receptor CCR2 expression by systemic sclerosis fibroblasts: evidence for autocrine regulation of myofibroblast differentiation. Arthritis Rheum. 2005;52(12):3772–82.

    Article  CAS  PubMed  Google Scholar 

  37. Hasegawa M, Sato S, Takehara K. Augmented production of chemokines (MCP-1, MIP-1α, and MIP-1β) in patients with systemic sclerosis: MCP-1 and MIP-1α may be involved in the development of pulmonary fibrosis. Clin Exp Immunol. 1999;117:159–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Antonelli A, Ferri C, Fallahi P, Ferrari SM, Giuggioli D, Colaci M, et al. CXCL10 (alpha) and CCL2 (beta) chemokines in systemic sclerosis – a longitudinal study. Rheumatology (Oxford). 2008;47(1):45–9.

    Article  CAS  Google Scholar 

  39. Luzina IG, Atamas SP, Wise R, Wigley FM, Xiao HQ, White B. Gene expression in bronchoalveolar lavage cells from scleroderma patients. Am J Respir Cell Mol Biol. 2002;26(5):549–57.

    Article  CAS  PubMed  Google Scholar 

  40. Schmidt K, Martinez-Gamboa L, Meier S, Witt C, Meisel C, Hanitsch LG, et al. Bronchoalveoloar lavage fluid cytokines and chemokines as markers and predictors for the outcome of interstitial lung disease in systemic sclerosis patients. Arthritis Res Ther. 2009;11(4):R111.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. van Bon L, Affandi AJ, Broen J, Christmann RB, Marijnissen RJ, Stawski L, et al. Proteome-wide analysis and CXCL4 as a biomarker in systemic sclerosis. N Engl J Med. 2014;370(5):433–43.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Kahaleh MB, Osborn I, LeRoy EC. Increased factor VIII/von Willebrand factor antigen and von Willebrand factor activity in scleroderma and in Raynaud’s phenomenon. Ann Intern Med. 1981;94(4 pt 1):482–4.

    Article  CAS  PubMed  Google Scholar 

  43. Herrick AL, Illingworth K, Blann A, Hay CR, Hollis S, Jayson MI. Von Willebrand factor, thrombomodulin, thromboxane, beta-thromboglobulin and markers of fibrinolysis in primary Raynaud’s phenomenon and systemic sclerosis. Ann Rheum Dis. 1996;55(2):122–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Scheja A, Akesson A, Geborek P, Wildt M, Wollheim CB, Wollheim FA, et al. Von Willebrand factor propeptide as a marker of disease activity in systemic sclerosis (scleroderma). Arthritis Res. 2001;3(3):178–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Kumanovics G, Minier T, Radics J, Palinkas L, Berki T, Czirjak L. Comprehensive investigation of novel serum markers of pulmonary fibrosis associated with systemic sclerosis and dermato/polymyositis. Clin Exp Rheumatol. 2008;26(3):414–20.

    CAS  PubMed  Google Scholar 

  46. Hesselstrand R, Ekman R, Eskilsson J, Isaksson A, Scheja A, Ohlin AK, et al. Screening for pulmonary hypertension in systemic sclerosis: the longitudinal development of tricuspid gradient in 227 consecutive patients, 1992–2001. Rheumatology (Oxford). 2005;44(3):366–71.

    Article  CAS  Google Scholar 

  47. Iannone F, Riccardi MT, Guiducci S, Bizzoca R, Cinelli M, Matucci-Cerinic M, et al. Bosentan regulates the expression of adhesion molecules on circulating T cells and serum soluble adhesion molecules in systemic sclerosis-associated pulmonary arterial hypertension. Ann Rheum Dis. 2008;67(8):1121–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Mannucci PM, Vanoli M, Forza I, Canciani MT, Scorza R. Von Willebrand factor cleaving protease (ADAMTS-13) in 123 patients with connective tissue diseases (systemic lupus erythematosus and systemic sclerosis). Haematologica. 2003;88(8):914–8.

    CAS  PubMed  Google Scholar 

  49. Hummers LK, Hall A, Wigley FM, Simons M. Abnormalities in the regulators of angiogenesis in patients with scleroderma. J Rheumatol. 2009;36(3):576–82.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Distler O, Del Rosso A, Giacomelli R, Cipriani P, Conforti ML, Guiducci S, et al. Angiogenic and angiostatic factors in systemic sclerosis: increased levels of vascular endothelial growth factor are a feature of the earliest disease stages and are associated with the absence of fingertip ulcers. Arthritis Res. 2002;4(6):R11.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Choi JJ, Min DJ, Cho ML, Min SY, Kim SJ, Lee SS, et al. Elevated vascular endothelial growth factor in systemic sclerosis. J Rheumatol. 2003;30(7):1529–33.

    CAS  PubMed  Google Scholar 

  52. Viac J, Schmitt D, Claudy A. Plasma vascular endothelial growth factor levels in scleroderma are not correlated with disease activity. Acta Derm Venereol. 2000;80(5):383.

    CAS  PubMed  Google Scholar 

  53. Kuryliszyn-Moskal A, Klimiuk PA, Sierakowski S. Soluble adhesion molecules (sVCAM-1, sE-selectin), vascular endothelial growth factor (VEGF) and endothelin-1 in patients with systemic sclerosis: relationship to organ systemic involvement. Clin Rheumatol. 2005;24(2):111–6.

    Article  PubMed  Google Scholar 

  54. Papaioannou AI, Zakynthinos E, Kostikas K, Kiropoulos T, Koutsokera A, Ziogas A, et al. Serum VEGF levels are related to the presence of pulmonary arterial hypertension in systemic sclerosis. BMC Pulm Med. 2009;9:18.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Distler O, Distler JH, Scheid A, Acker T, Hirth A, Rethage J, et al. Uncontrolled expression of vascular endothelial growth factor and its receptors leads to insufficient skin angiogenesis in patients with systemic sclerosis. Circ Res. 2004;95(1):109–16.

    Article  CAS  PubMed  Google Scholar 

  56. Wipff J, Avouac J, Borderie D, Zerkak D, Lemarechal H, Kahan A, et al. Disturbed angiogenesis in systemic sclerosis: high levels of soluble endoglin. Rheumatology (Oxford). 2008;47(7):972–5.

    Article  CAS  Google Scholar 

  57. Fujimoto M, Hasegawa M, Hamaguchi Y, Komura K, Matsushita T, Yanaba K, et al. A clue for telangiectasis in systemic sclerosis: elevated serum soluble endoglin levels in patients with the limited cutaneous form of the disease. Dermatology. 2006;213(2):88–92.

    Article  CAS  PubMed  Google Scholar 

  58. Shovlin CL, Guttmacher AE, Buscarini E, Faughnan ME, Hyland RH, Westermann CJ, et al. Diagnostic criteria for hereditary hemorrhagic telangiectasia (Rendu-Osler-Weber syndrome). Am J Med Genet. 2000;91(1):66–7.

    Article  CAS  PubMed  Google Scholar 

  59. Wipff J, Kahan A, Hachulla E, Sibilia J, Cabane J, Meyer O, et al. Association between an endoglin gene polymorphism and systemic sclerosis-related pulmonary arterial hypertension. Rheumatology (Oxford). 2007;46(4):622–5.

    Article  CAS  Google Scholar 

  60. Roumm AD, Whiteside TL, Medsger Jr TA, Rodnan GP. Lymphocytes in the skin of patients with progressive systemic sclerosis. Quantification, subtyping, and clinical correlations. Arthritis Rheum. 1984;27(6):645–53.

    Article  CAS  PubMed  Google Scholar 

  61. Gruschwitz M, Sepp N, Kofler H, Wick G. Expression of class II-MHC antigens in the dermis of patients with progressive systemic sclerosis. Immunobiology. 1991;182(3–4):234–55.

    Article  CAS  PubMed  Google Scholar 

  62. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 1994;76(2):301–14.

    Article  CAS  PubMed  Google Scholar 

  63. Abraham D, Lupoli S, McWhirter A, Plater-Zyberk C, Piela TH, Korn JH, et al. Expression and function of surface antigens on scleroderma fibroblasts. Arthritis Rheum. 1991;34(9):1164–72.

    Article  CAS  PubMed  Google Scholar 

  64. Sfikakis PP, Tesar J, Baraf H, Lipnick R, Klipple G, Tsokos GC. Circulating intercellular adhesion molecule-1 in patients with systemic sclerosis. Clin Immunol Immunopathol. 1993;68(1):88–92.

    Article  CAS  PubMed  Google Scholar 

  65. Gruschwitz MS, Hornstein OP, von den Driesch P. Correlation of soluble adhesion molecules in the peripheral blood of scleroderma patients with their in situ expression and with disease activity. Arthritis Rheum. 1995;38(2):184–9.

    Article  CAS  PubMed  Google Scholar 

  66. Ihn H, Sato S, Fujimoto M, Kikuchi K, Kadono T, Tamaki K, et al. Circulating intercellular adhesion molecule-1 in the sera of patients with systemic sclerosis: enhancement by inflammatory cytokines. Br J Rheumatol. 1997;36(12):1270–5.

    Article  CAS  PubMed  Google Scholar 

  67. Hasegawa M, Asano Y, Endo H, Fujimoto M, Goto D, Ihn H, et al. Serum adhesion molecule levels as prognostic markers in patients with early systemic sclerosis: a multicentre, prospective, observational study. PLoS One. 2014;9(2):e88150.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  68. Stratton RJ, Coghlan JG, Pearson JD, Burns A, Sweny P, Abraham DJ, et al. Different patterns of endothelial cell activation in renal and pulmonary vascular disease in scleroderma. Q J Med. 1998;91:561–6.

    Article  CAS  Google Scholar 

  69. Mittag M, Beckheinrich P, Haustein UF. Systemic sclerosis-related Raynaud’s phenomenon: effects of iloprost infusion therapy on serum cytokine, growth factor and soluble adhesion molecule levels. Acta Derm Venereol. 2001;81(4):294–7.

    Article  CAS  PubMed  Google Scholar 

  70. Kohno N, Kyoizumi S, Awaya Y, Fukuhara H, Yamakido M, Akiyama M. New serum indicator of interstitial pneumonitis activity: sialylated carbohydrate antigen KL-6. Chest. 1989;96(1):68–73.

    Article  CAS  PubMed  Google Scholar 

  71. Hermans C, Bernard A. Lung epithelium-specific proteins: characteristics and potential applications as markers. Am J Respir Crit Care Med. 1999;159(2):646–78.

    Article  CAS  PubMed  Google Scholar 

  72. Kobayashi J, Kitamura S. KL-6: a serum marker for interstitial pneumonia. Chest. 1995;108(2):311–5.

    Article  CAS  PubMed  Google Scholar 

  73. Asano Y, Ihn H, Yamane K, Yazawa N, Kubo M, Fujimoto M, et al. Clinical significance of surfactant protein D as a serum marker for evaluating pulmonary fibrosis in patients with systemic sclerosis. Arthritis Rheum. 2001;44(6):1363–9.

    Article  CAS  PubMed  Google Scholar 

  74. Hant FN, Ludwicka-Bradley A, Wang HJ, Li N, Elashoff R, Tashkin DP, et al. Surfactant protein D and KL-6 as serum biomarkers of interstitial lung disease in patients with scleroderma. J Rheumatol. 2009;36(4):773–80.

    Article  CAS  PubMed  Google Scholar 

  75. Yanaba K, Hasegawa M, Takehara K, Sato S. Comparative study of serum surfactant protein-D and KL-6 concentrations in patients with systemic sclerosis as markers for monitoring the activity of pulmonary fibrosis. J Rheumatol. 2004;31(6):1112–20.

    CAS  PubMed  Google Scholar 

  76. Hieshima K, Imai T, Baba M, Shoudai K, Ishizuka K, Nakagawa T, et al. A novel human CC chemokine PARC that is most homologous to macrophage-inflammatory protein-1 alpha/LD78 alpha and chemotactic for T lymphocytes, but not for monocytes. J Immunol. 1997;159(3):1140–9.

    CAS  PubMed  Google Scholar 

  77. Atamas SP, Luzina IG, Choi J, Tsymbalyuk N, Carbonetti NH, Singh IS, et al. Pulmonary and activation-regulated chemokine stimulates collagen production in lung fibroblasts. Am J Respir Cell Mol Biol. 2003;29(6):743–9.

    Article  CAS  PubMed  Google Scholar 

  78. Kodera M, Hasegawa M, Komura K, Yanaba K, Takehara K, Sato S. Serum pulmonary and activation-regulated chemokine/CCL18 levels in patients with systemic sclerosis: a sensitive indicator of active pulmonary fibrosis. Arthritis Rheum. 2005;52(9):2889–96.

    Article  CAS  PubMed  Google Scholar 

  79. Tiev KP, Hua-Huy T, Kettaneh A, Gain M, Duong-Quy S, Toledano C, et al. Serum CC chemokine ligand-18 predicts lung disease worsening in systemic sclerosis. Eur Respir J. 2011;38(6):1355–60.

    Article  CAS  PubMed  Google Scholar 

  80. Elhaj M, Charles J, Pedroza C, Liu X, Zhou X, Estrada YMRM, et al. Can serum surfactant protein D or CC-chemokine ligand 18 predict outcome of interstitial lung disease in patients with early systemic sclerosis? J Rheumatol. 2013;40(7):1114–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Prasse A, Pechkovsky DV, Toews GB, Schafer M, Eggeling S, Ludwig C, et al. CCL18 as an indicator of pulmonary fibrotic activity in idiopathic interstitial pneumonias and systemic sclerosis. Arthritis Rheum. 2007;56(5):1685–93.

    Article  CAS  PubMed  Google Scholar 

  82. Steen V, Medsger Jr TA. Predictors of isolated pulmonary hypertension in patients with systemic sclerosis and limited cutaneous involvement. Arthritis Rheum. 2003;48(2):516–22.

    Article  PubMed  Google Scholar 

  83. Cavagna L, Caporali R, Klersy C, Ghio S, Albertini R, Scelsi L, et al. Comparison of brain natriuretic peptide (BNP) and NT-proBNP in screening for pulmonary arterial hypertension in patients with systemic sclerosis. J Rheumatol. 2010;37(10):2064–70.

    Article  CAS  PubMed  Google Scholar 

  84. Allanore Y, Borderie D, Meune C, Cabanes L, Weber S, Ekindjian OG, et al. N-terminal pro-brain natriuretic peptide as a diagnostic marker of early pulmonary artery hypertension in patients with systemic sclerosis and effects of calcium-channel blockers. Arthritis Rheum. 2003;48(12):3503–8.

    Article  CAS  PubMed  Google Scholar 

  85. Williams MH, Handler CE, Akram R, Smith CJ, Das C, Smee J, et al. Role of N-terminal brain natriuretic peptide (N-TproBNP) in scleroderma-associated pulmonary arterial hypertension. Eur Heart J. 2006;27(12):1485–94.

    Article  CAS  PubMed  Google Scholar 

  86. Allanore Y, Borderie D, Avouac J, Zerkak D, Meune C, Hachulla E, et al. High N-terminal pro-brain natriuretic peptide levels and low diffusing capacity for carbon monoxide as independent predictors of the occurrence of precapillary pulmonary arterial hypertension in patients with systemic sclerosis. Arthritis Rheum. 2008;58(1):284–91.

    Article  CAS  PubMed  Google Scholar 

  87. Galie N, Hoeper MM, Humbert M, Torbicki A, Vachiery JL, Barbera JA, et al. Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J. 2009;30(20):2493–537.

    Article  PubMed  Google Scholar 

  88. Braun-Moscovici Y, Nahir AM, Balbir-Gurman A. Endothelin and pulmonary arterial hypertension. Semin Arthritis Rheum. 2004;34(1):442–53.

    Article  CAS  PubMed  Google Scholar 

  89. Yamane K, Kashiwagi H, Suzuki N, Miyauchi T, Yanagisawa M, Goto K, et al. Elevated plasma levels of endothelin-1 in systemic sclerosis. Arthritis Rheum. 1991;34(2):243–4.

    Article  CAS  PubMed  Google Scholar 

  90. Morelli S, Ferri C, Di Francesco L, Baldoncini R, Carlesimo M, Bottoni U, et al. Plasma endothelin-1 levels in patients with systemic sclerosis: influence of pulmonary or systemic arterial hypertension. Ann Rheum Dis. 1995;54(9):730–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Schmidt J, Launay D, Soudan B, Hachulla E, de Groote P, Lambert M, et al. Assessment of plasma endothelin level measurement in systemic sclerosis. Rev Med Interne. 2007;28(6):371–6.

    Article  CAS  PubMed  Google Scholar 

  92. Sulli A, Soldano S, Pizzorni C, Montagna P, Secchi ME, Villaggio B, et al. Raynaud’s phenomenon and plasma endothelin: correlations with capillaroscopic patterns in systemic sclerosis. J Rheumatol. 2009;36(6):1235–9.

    Article  CAS  PubMed  Google Scholar 

  93. Kim HS, Park MK, Kim HY, Park SH. Capillary dimension measured by computer-based digitalized image correlated with plasma endothelin-1 levels in patients with systemic sclerosis. Clin Rheumatol. 2010;29(3):247–54.

    Article  PubMed  Google Scholar 

  94. Pendergrass SA, Hayes E, Farina G, Lemaire R, Farber HW, Whitfield ML, et al. Limited systemic sclerosis patients with pulmonary arterial hypertension show biomarkers of inflammation and vascular injury. PLoS One. 2010;5(8):e12106.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  95. Christmann RB, Hayes E, Pendergrass S, Padilla C, Farina G, Affandi AJ, et al. Interferon and alternative activation of monocyte/macrophages in systemic sclerosis-associated pulmonary arterial hypertension. Arthritis Rheum. 2011;63(6):1718–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Fries JF, Spitz P, Kraines RG, Holman HR. Measurement of patient outcome in arthritis. Arthritis Rheum. 1980;23(2):137–45.

    Article  CAS  PubMed  Google Scholar 

  97. Steen VD, Medsger Jr TA. The value of the Health Assessment Questionnaire and special patient-generated scales to demonstrate change in systemic sclerosis patients over time. Arthritis Rheum. 1997;40(11):1984–91.

    Article  CAS  PubMed  Google Scholar 

  98. Clements PJ, Roth MD, Elashoff R, Tashkin DP, Goldin J, Silver RM, et al. Scleroderma lung study (SLS): differences in the presentation and course of patients with limited versus diffuse systemic sclerosis. Ann Rheum Dis. 2007;66(12):1641–7.

    Article  PubMed Central  PubMed  Google Scholar 

  99. Valentini G, Matucci Cerinic M. Disease-specific quality indicators, guidelines and outcome measures in scleroderma. Clin Exp Rheumatol. 2007;25(6 Suppl 47):159–62.

    CAS  PubMed  Google Scholar 

  100. Medsger Jr TA, Bombardieri S, Czirjak L, Scorza R, Della Rossa A, Bencivelli W. Assessment of disease severity and prognosis. Clin Exp Rheumatol. 2003;21(3 Suppl 29):S42–6.

    PubMed  Google Scholar 

  101. Hasegawa M, Asano Y, Endo H, Fujimoto M, Goto D, Ihn H, et al. Serum chemokine levels as prognostic markers in patients with early systemic sclerosis: a multicenter, prospective, observational study. Mod Rheumatol. 2013;23(6):1076–84.

    Article  CAS  PubMed  Google Scholar 

  102. Liu X, Mayes MD, Tan FK, Wu M, Reveille JD, Harper BE, et al. Correlation of interferon-inducible chemokine plasma levels with disease severity in systemic sclerosis. Arthritis Rheum. 2013;65(1):226–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoru Hasegawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Hasegawa, M. (2016). Biomarker. In: Takehara, K., Fujimoto, M., Kuwana, M. (eds) Systemic Sclerosis. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55708-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55708-1_13

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55707-4

  • Online ISBN: 978-4-431-55708-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics