Skip to main content

Potential Pathways in the Pathogenesis of IgG4-Related Disease

  • Chapter
  • First Online:
IgG4-Related Kidney Disease
  • 568 Accesses

Abstract

IgG4-related disease (IgG4-RD) is a systemic disease characterized by elevated serum IgG4 and a marked infiltration of IgG4-positive plasma cells into affected organs. Regarding the immunological aspects of this disease, it is well known that IgG4 is induced by T helper type 2 (Th2) cytokines such as interleukin (IL)-4 and IL-13. Thus, IgG4-RD is considered to be a Th2-predominant disease. In addition, innate immune cells have recently received increasing attention with regards to the initiation of IgG4-RD. Exploring the mechanism of innate and acquired immunity in IgG4-RD is a highly promising field of investigation. In this chapter, we focus on the selective localization and functions of individual Th subsets and innate immune cells to clarify the contribution of these cells to the pathogenesis of IgG4-RD.

Competing interests: The authors declare no competing interests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hamano H, Kawa S, Horiuchi A, et al. High serum IgG4 concentrations in patients with sclerosing pancreatitis. N Engl J Med. 2001;344(10):732–8.

    Article  CAS  PubMed  Google Scholar 

  2. Zen Y, Harada K, Sasaki M, et al. IgG4-related sclerosing cholangitis with and without hepatic inflammatory pseudotumor, and sclerosing pancreatitis-associated sclerosing cholangitis: do they belong to a spectrum of sclerosing pancreatitis? Am J Surg Pathol. 2004;28(9):1193–203.

    Article  PubMed  Google Scholar 

  3. Takeda S, Haratake J, Kasai T, et al. IgG4-associated idiopathic tubulointerstitial nephritis complicating autoimmune pancreatitis. Nephrol Dial Transplant. 2004;19(2):474–6.

    Article  PubMed  Google Scholar 

  4. Zen Y, Inoue D, Kitao A, et al. IgG4-related lung and pleural disease: a clinicopathologic study of 21 cases. Am J Surg Pathol. 2009;33(12):1886–93.

    Article  PubMed  Google Scholar 

  5. Sato Y, Kojima M, Takata K, et al. Systemic IgG4-related lymphadenopathy: a clinical and pathologic comparison to multicentric Castleman’s disease. Mod Pathol. 2009;22(4):589–99.

    Article  CAS  PubMed  Google Scholar 

  6. Dahlgren M, Khosroshahi A, Nielsen GP, et al. Riedel’s thyroiditis and multifocal fibrosclerosis are part of the IgG4-related systemic disease spectrum. Arthritis Care Res. 2010;62(9):1312–8.

    Article  Google Scholar 

  7. Yamamoto M, Harada S, Ohara M, et al. Clinical and pathological differences between Mikulicz’s disease and Sjogren’s syndrome. Rheumatology (Oxf, England). 2005;44(2):227–34.

    Article  CAS  Google Scholar 

  8. Morgan WS, Castleman B. A clinicopathologic study of Mikulicz’s disease. Am J Pathol. 1953;29(3):471–503.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Stone JH, Khosroshahi A, Deshpande V, et al. Recommendations for the nomenclature of IgG4-related disease and its individual organ system manifestations. Arthritis Rheumatol. 2012;64(10):3061–7.

    Article  CAS  Google Scholar 

  10. Moriyama M, Tanaka A, Maehara T, et al. Clinical characteristics of Mikulicz’s disease as an IgG4-related disease. Clin Oral Inv. 2013;17(9):1995–2002.

    Article  Google Scholar 

  11. van der Neut Kolfschoten M, Schuurman J, Losen M, et al. Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science. 2007;317(5844):1554–7.

    Article  PubMed  Google Scholar 

  12. Rispens T, Ooievaar-De Heer P, Vermeulen E, et al. Human IgG4 binds to IgG4 and conformationally altered IgG1 via Fc-Fc interactions. J Immunol. 2009;182(7):4275–81.

    Article  CAS  PubMed  Google Scholar 

  13. Finkelman FD, Vercelli D. Advances in asthma, allergy mechanisms, and genetics in 2006. J Allergy Clin Immunol. 2007;120(3):544–50.

    Article  CAS  PubMed  Google Scholar 

  14. Miyake K, Moriyama M, Aizawa K, et al. Peripheral CD4+ T cells showing a Th2 phenotype in a patient with Mikulicz’s disease associated with lymphadenopathy and pleural effusion. Mod Rheumatol Jpn Rheum Assoc. 2008;18(1):86–90.

    Article  Google Scholar 

  15. Maehara T, Moriyama M, Nakashima H, et al. Interleukin-21 contributes to germinal centre formation and immunoglobulin G4 production in IgG4-related dacryoadenitis and sialoadenitis, so-called Mikulicz’s disease. Ann Rheum Dis. 2012;71(12):2011–20.

    Article  CAS  PubMed  Google Scholar 

  16. Watanabe T, Yamashita K, Fujikawa S, et al. Involvement of activation of toll-like receptors and nucleotide-binding oligomerization domain-like receptors in enhanced IgG4 responses in autoimmune pancreatitis. Arthritis Rheum. 2012;64(3):914–24.

    Article  CAS  PubMed  Google Scholar 

  17. Fukui Y, Uchida K, Sakaguchi Y, et al. Possible involvement of Toll-like receptor 7 in the development of type 1 autoimmune pancreatitis. J Gastroenterol. 2015;50(4):435–44.

    Article  CAS  PubMed  Google Scholar 

  18. King C, Tangye SG, Mackay CR. T follicular helper (TFH) cells in normal and dysregulated immune responses. Annu Rev Immunol. 2008;26:741–66.

    Article  CAS  PubMed  Google Scholar 

  19. Kennedy MK, Torrance DS, Picha KS, et al. Analysis of cytokine mRNA expression in the central nervous system of mice with experimental autoimmune encephalomyelitis reveals that IL-10 mRNA expression correlates with recovery. J Immunol (Baltimore, Md: 1950). 1992;149(7):2496–505.

    CAS  Google Scholar 

  20. Rapoport MJ, Jaramillo A, Zipris D, et al. Interleukin 4 reverses T cell proliferative unresponsiveness and prevents the onset of diabetes in nonobese diabetic mice. J Exp Med. 1993;178(1):87–99.

    Article  CAS  PubMed  Google Scholar 

  21. Punnonen J, Aversa G, Cocks BG, et al. Interleukin 13 induces interleukin 4-independent IgG4 and IgE synthesis and CD23 expression by human B cells. Proc Natl Acad Sci U S A. 1993;90(8):3730–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nirula A, Glaser SM, Kalled SL, et al. What is IgG4? A review of the biology of a unique immunoglobulin subtype. Curr Opin Rheumatol. 2011;23(1):119–24.

    Article  CAS  PubMed  Google Scholar 

  23. Tanaka A, Moriyama M, Nakashima H, et al. Th2 and regulatory immune reactions contribute to IgG4 production and the initiation of Mikulicz disease. Arthritis Rheum. 2012;64(1):254–63.

    Article  CAS  PubMed  Google Scholar 

  24. Nakashima H, Miyake K, Moriyama M, et al. An amplification of IL-10 and TGF-beta in patients with IgG4-related tubulointerstitial nephritis. Clin Nephrol. 2010;73(5):385–91.

    Article  CAS  PubMed  Google Scholar 

  25. Okazaki K, Uchida K, Ohana M, et al. Autoimmune-related pancreatitis is associated with autoantibodies and a Th1/Th2-type cellular immune response. Gastroenterology. 2000;118(3):573–81.

    Article  CAS  PubMed  Google Scholar 

  26. Ohta N, Makihara S, Okano M, et al. Roles of IL-17, Th1, and Tc1 cells in patients with IgG4-related sclerosing sialadenitis. Laryngoscope. 2012;122(10):2169–74.

    Article  CAS  PubMed  Google Scholar 

  27. Mattoo H, Mahajan VS, Della-Torre E, et al. De novo oligoclonal expansions of circulating plasmablasts in active and relapsing IgG4-related disease. J Allergy Clin Immunol. 2014;134(3):679–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shevach EM, DiPaolo RA, Andersson J, et al. The lifestyle of naturally occurring CD4+ CD25+ Foxp3+ regulatory T cells. Immunol Rev. 2006;212:60–73.

    Article  CAS  PubMed  Google Scholar 

  29. Pot C, Apetoh L, Kuchroo VK. Type 1 regulatory T cells (Tr1) in autoimmunity. Semin Immunol. 2011;23(3):202–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lan RY, Cheng C, Lian ZX, et al. Liver-targeted and peripheral blood alterations of regulatory T cells in primary biliary cirrhosis. Hepatology. 2006;43(4):729–37.

    Article  PubMed  Google Scholar 

  31. Meiler F, Klunker S, Zimmermann M, et al. Distinct regulation of IgE, IgG4 and IgA by T regulatory cells and toll-like receptors. Allergy. 2008;63(11):1455–63.

    Article  CAS  PubMed  Google Scholar 

  32. Maizels RM, Yazdanbakhsh M. Immune regulation by helminth parasites: cellular and molecular mechanisms. Nat Rev Immunology. 2003;3(9):733–44.

    Article  CAS  PubMed  Google Scholar 

  33. Zen Y, Fujii T, Harada K, et al. Th2 and regulatory immune reactions are increased in immunoglobin G4-related sclerosing pancreatitis and cholangitis. Hepatology. 2007;45(6):1538–46.

    Article  CAS  PubMed  Google Scholar 

  34. Miyoshi H, Uchida K, Taniguchi T, et al. Circulating naive and CD4+CD25high regulatory T cells in patients with autoimmune pancreatitis. Pancreas. 2008;36(2):133–40.

    Article  CAS  PubMed  Google Scholar 

  35. Infante-Duarte C, Horton HF, Byrne MC, et al. Microbial lipopeptides induce the production of IL-17 in Th cells. J Immunol (Baltimore, Md: 1950). 2000;165(11):6107–15.

    Article  CAS  Google Scholar 

  36. Annunziato F, Cosmi L, Santarlasci V, et al. Phenotypic and functional features of human Th17 cells. J Exp Med. 2007;204(8):1849–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nguyen CQ, Hu MH, Li Y, et al. Salivary gland tissue expression of interleukin-23 and interleukin-17 in Sjogren’s syndrome: findings in humans and mice. Arthritis Rheumatol. 2008;58(3):734–43.

    Article  CAS  Google Scholar 

  38. Maehara T, Moriyama M, Hayashida JN, et al. Selective localization of T helper subsets in labial salivary glands from primary Sjogren’s syndrome patients. Clin Exp Immunol. 2012;169(2):89–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Morita R, Schmitt N, Bentebibel SE, et al. Human blood CXCR5(+)CD4(+) T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity. 2011;34(1):108–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vinuesa CG, Linterman MA, Goodnow CC, et al. T cells and follicular dendritic cells in germinal center B-cell formation and selection. Immunol Rev. 2010;237(1):72–89.

    Article  CAS  PubMed  Google Scholar 

  41. Ozaki K, Spolski R, Feng CG, et al. A critical role for IL-21 in regulating immunoglobulin production. Science (New York, NY). 2002;298(5598):1630–4.

    Article  CAS  Google Scholar 

  42. Suto A, Nakajima H, Hirose K, et al. Interleukin 21 prevents antigen-induced IgE production by inhibiting germ line C(epsilon) transcription of IL-4-stimulated B cells. Blood. 2002;100(13):4565–73.

    Article  CAS  PubMed  Google Scholar 

  43. Kitayama D, Sakamoto A, Arima M, et al. A role for Bcl6 in sequential class switch recombination to IgE in B cells stimulated with IL-4 and IL-21. Mol Immunol. 2008;45(5):1337–45.

    Article  CAS  PubMed  Google Scholar 

  44. Wood N, Bourque K, Donaldson DD, et al. IL-21 effects on human IgE production in response to IL-4 or IL-13. Cell Immunol. 2004;231(1–2):133–45.

    Article  CAS  PubMed  Google Scholar 

  45. Akiyama M, Suzuki K, Yamaoka K, et al. Number of circulating follicular helper 2 T cells correlates with IgG4 and interleukin-4 levels and plasmablast numbers in IgG4-related disease. Arthritis Rheumatol. 2015;67(9):2476–81.

    Article  CAS  PubMed  Google Scholar 

  46. van de Berg PJ. vLE, ten Berge IJ, et al. Cytotoxic human CD4+ T cells. Curr Opin Immunol. 2008;20:339–43.

    Article  PubMed  Google Scholar 

  47. Mattoo H, Mahajan VS, Maehara T, et al. Clonal expansion of CD4+ Cytotoxic T Lymphocytes in IgG4-related disease. J Allergy Clin Immunol. 2015, in press.

    Google Scholar 

  48. Kigerl KA, Gensel JC, Ankeny DP, et al. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci. 2009;29(43):13435–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Martinez FO, Gordon S, Locati M, et al. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol (Baltimore, Md: 1950). 2006;177(10):7303–11.

    Article  CAS  Google Scholar 

  50. Umehara H, Okazaki K, Masaki Y, et al. A novel clinical entity, IgG4-related disease (IgG4RD): general concept and details. Mod Rheumatol. 2012;22(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  51. Furukawa S, Moriyama M, Tanaka A, et al. Preferential M2 macrophages contribute to fibrosis in IgG4-related dacryoadenitis and sialoadenitis, so-called Mikulicz’s disease. Clin Immunol (Orlando, Fla). 2015;156(1):9–18.

    Article  CAS  Google Scholar 

  52. Prasse A, Pechkovsky DV, Toews GB, et al. CCL18 as an indicator of pulmonary fibrotic activity in idiopathic interstitial pneumonias and systemic sclerosis. Arthritis Rheumatol. 2007;56(5):1685–93.

    Article  CAS  Google Scholar 

  53. Tsicopoulos A, Chang Y, Ait Yahia S, et al. Role of CCL18 in asthma and lung immunity. Clin Exp Allergy. 2013;43(7):716–22.

    Article  CAS  PubMed  Google Scholar 

  54. Kim HO, Cho SI, Chung BY, et al. Expression of CCL1 and CCL18 in atopic dermatitis and psoriasis. Clin Exp Dermatol. 2012;37(5):521–6.

    Article  CAS  PubMed  Google Scholar 

  55. Islam SA, Ling MF, Leung J, et al. Identification of human CCR8 as a CCL18 receptor. J Exp Med. 2013;210(10):1889–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chenivesse C, Chang Y, Azzaoui I, et al. Pulmonary CCL18 recruits human regulatory T cells. J Immunol (Baltimore, Md: 1950). 2012;189(1):128–37.

    Article  CAS  Google Scholar 

  57. Schmitz J, Owyang A, Oldham E, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005;23(5):479–90.

    Article  CAS  PubMed  Google Scholar 

  58. O’Doherty U, Peng M, Gezelter S, et al. Human blood contains two subsets of dendritic cells, one immunologically mature and the other immature. Immunology. 1994;82(3):487–93.

    PubMed  PubMed Central  Google Scholar 

  59. Robinson SP, Patterson S, English N, et al. Human peripheral blood contains two distinct lineages of dendritic cells. Eur J Immunol. 1999;29(9):2769–78.

    Article  CAS  PubMed  Google Scholar 

  60. Cella M, Jarrossay D, Facchetti F, et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat Med. 1999;5(8):919–23.

    Article  CAS  PubMed  Google Scholar 

  61. Arai Y, Yamashita K, Kuriyama K, et al. Plasmacytoid dendritic cell activation and IFN-alpha production are prominent features of murine autoimmune pancreatitis and human IgG4-related autoimmune pancreatitis. J Immunol (Baltimore, Md: 1950). 2015;195(7):3033–44.

    Article  CAS  Google Scholar 

  62. Mackay F, Schneider P, Rennert P, et al. BAFF AND APRIL: a tutorial on B cell survival. Annu Rev Immunol. 2003;21:231–64.

    Article  CAS  PubMed  Google Scholar 

  63. Kiyama K, Kawabata D, Hosono Y, et al. Serum BAFF and APRIL levels in patients with IgG4-related disease and their clinical significance. Arthritis Res Ther. 2012;14(2):R86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Litinskiy MB, Nardelli B, Hilbert DM, et al. DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat Immunol. 2002;3(9):822–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Okazaki K, Uchida K, Fukui T. Recent advances in autoimmune pancreatitis: concept, diagnosis, and pathogenesis. J Gastroenterol. 2008;43(6):409–18.

    Article  CAS  PubMed  Google Scholar 

  66. Yamamoto M, Takahashi H, Ishigami K, et al. Evaluation and clinical validity of a new questionnaire for Mikulicz’s disease. Int J Rheumatol. 2012;2012:283459.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiji Nakamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Moriyama, M., Nakamura, S. (2016). Potential Pathways in the Pathogenesis of IgG4-Related Disease. In: Saito, T., Stone, J., Nakashima, H., Saeki, T., Kawano, M. (eds) IgG4-Related Kidney Disease. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55687-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55687-9_3

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55686-2

  • Online ISBN: 978-4-431-55687-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics