Skip to main content

Optogenetic Potentials of Diverse Animal Opsins

  • Chapter
Optogenetics

Abstract

Animal opsin-based pigments are light-activated G-protein-coupled receptors (GPCRs), which drive signal transduction cascades via G proteins. Thousands of animal opsins have been identified, and molecular phylogenetic and biochemical analyses have revealed that opsin-based pigments have basically diversified in selective activation of G proteins (Gs, Gq, Gi, Go, and transducin). Here, we discuss the optogenetic potentials of diverse animal opsins, particularly Gq-coupled spider opsin, Gs-coupled jellyfish opsin, and Gi/Go-coupled mosquito opsin 3 (Opn3). After absorbing light, these purified opsin-based pigments do not release the chromophore retinal, indicating the bleach-resistant nature of their photoproducts. In addition, unlike vertebrate visual opsin-based pigments that have been conventionally used for optogenetic applications, the stable photoproducts of spider opsin- and mosquito Opn3-based pigments revert to their original dark states upon subsequent light absorption, which indicates their photoregeneration ability. Mammalian cultured cells that express spider opsin exhibit light-induced increases in Ca2+ levels, and jellyfish opsin- and mosquito Opn3-expressing cells exhibit light-dependent increases and decreases in cyclic adenosine monophosphate (cAMP) levels, respectively. These findings indicate that these pigments control different second messengers, Ca2+ and cAMP, in mammalian cultured cells, suggesting that these bleach-resistant opsins have an optogenetic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Airan RD, Thompson KR, Fenno LE et al (2009) Temporally precise in vivo control of intracellular signalling. Nature 458(7241):1025–1029

    Article  CAS  PubMed  Google Scholar 

  • Arendt D, Tessmar-Raible K, Snyman H et al (2004) Ciliary photoreceptors with a vertebrate-type opsin in an invertebrate brain. Science 306(5697):869–871

    Article  CAS  PubMed  Google Scholar 

  • Bailes HJ, Zhuang LY, Lucas RJ (2012) Reproducible and sustained regulation of Galphas signalling using a metazoan opsin as an optogenetic tool. PLoS One 7(1):e30774

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • BÃ¥vik CO, Busch C, Eriksson U (1992) Characterization of a plasma retinol-binding protein membrane receptor expressed in the retinal pigment epithelium. J Biol Chem 267(32):23035–23042

    PubMed  Google Scholar 

  • Bernstein JG, Boyden ES (2011) Optogenetic tools for analyzing the neural circuits of behavior. Trends Cogn Sci 15(12):592–600

    Article  PubMed Central  PubMed  Google Scholar 

  • Blackshaw S, Snyder SH (1999) Encephalopsin: a novel mammalian extraretinal opsin discretely localized in the brain. J Neurosci 19(10):3681–3690

    CAS  PubMed  Google Scholar 

  • Boyden ES (2011) A history of optogenetics: the development of tools for controlling brain circuits with light. F1000 Biol Rep 3:11

    Google Scholar 

  • Deisseroth K (2011) Optogenetics. Nat Methods 8(1):26–29

    Article  CAS  PubMed  Google Scholar 

  • Fenno L, Yizhar O, Deisseroth K (2011) The development and application of optogenetics. Annu Rev Neurosci 34:389–412

    Article  CAS  PubMed  Google Scholar 

  • Hegemann P, Nagel G (2013) From channelrhodopsins to optogenetics. EMBO Mol Med 5(2):173–176

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hill CA, Fox AN, Pitts RJ et al (2002) G protein-coupled receptors in Anopheles gambiae. Science 298(5591):176–178

    Article  CAS  PubMed  Google Scholar 

  • Jiang M, Pandey S, Fong HK (1993) An opsin homologue in the retina and pigment epithelium. Invest Ophthalmol Vis Sci 34(13):3669–3678

    CAS  PubMed  Google Scholar 

  • Koyanagi M, Terakita A (2008) Gq-coupled rhodopsin subfamily composed of invertebrate visual pigment and melanopsin. Photochem Photobiol 84(4):1024–1030

    Article  CAS  PubMed  Google Scholar 

  • Koyanagi M, Terakita A (2014) Diversity of animal opsin-based pigments and their optogenetic potential. Biochim Biophys Acta 1837(5):710–716

    Article  CAS  PubMed  Google Scholar 

  • Koyanagi M, Kubokawa K, Tsukamoto H et al (2005) Cephalochordate melanopsin: evolutionary linkage between invertebrate visual cells and vertebrate photosensitive retinal ganglion cells. Curr Biol 15(11):1065–1069

    Article  CAS  PubMed  Google Scholar 

  • Koyanagi M, Nagata T, Katoh K et al (2008a) Molecular evolution of arthropod color vision deduced from multiple opsin genes of jumping spiders. J Mol Evol 66(2):130–137

    Article  CAS  PubMed  Google Scholar 

  • Koyanagi M, Takano K, Tsukamoto H et al (2008b) Jellyfish vision starts with cAMP signaling mediated by opsin-G(s) cascade. Proc Natl Acad Sci U S A 105(40):15576–15580

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koyanagi M, Takada E, Nagata T et al (2013) Homologs of vertebrate Opn3 potentially serve as a light sensor in nonphotoreceptive tissue. Proc Natl Acad Sci U S A 110(13):4998–5003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Masseck OA, Spoida K, Dalkara D et al (2014) Vertebrate cone opsins enable sustained and highly sensitive rapid control of Gi/o signaling in anxiety circuitry. Neuron 81(6):1263–1273

    Article  CAS  PubMed  Google Scholar 

  • Moutsaki P, Whitmore D, Bellingham J et al (2003) Teleost multiple tissue (tmt) opsin: a candidate photopigment regulating the peripheral clocks of zebrafish? Brain Res Mol Brain Res 112(1–2):135–145

    Article  CAS  PubMed  Google Scholar 

  • Nagata T, Koyanagi M, Tsukamoto H et al (2012) Depth perception from image defocus in a jumping spider. Science 335(6067):469–471

    Article  CAS  PubMed  Google Scholar 

  • Nene V, Wortman JR, Lawson D et al (2007) Genome sequence of Aedes aegypti, a major arbovirus vector. Science 316(5832):1718–1723

    Article  CAS  PubMed  Google Scholar 

  • Ooka S, Katow T, Yaguchi S et al (2010) Spatiotemporal expression pattern of an encephalopsin orthologue of the sea urchin Hemicentrotus pulcherrimus during early development, and its potential role in larval vertical migration. Dev Growth Differ 52(2):195–207

    Article  CAS  PubMed  Google Scholar 

  • Sodergren E, Weinstock GM, Davidson EH et al (2006) The genome of the sea urchin Strongylocentrotus purpuratus. Science 314(5801):941–952

    Article  PubMed  Google Scholar 

  • Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85(3):845–881

    Article  CAS  PubMed  Google Scholar 

  • Terakita A (2005) The opsins. Genome Biol 6(3):213

    Article  PubMed Central  PubMed  Google Scholar 

  • Terakita A, Hariyama T, Tsukahara Y et al (1993) Interaction of GTP-binding protein Gq with photoactivated rhodopsin in the photoreceptor membranes of crayfish. FEBS Lett 330(2):197–200

    Article  CAS  PubMed  Google Scholar 

  • Terakita A, Tsukamoto H, Koyanagi M et al (2008) Expression and comparative characterization of Gq-coupled invertebrate visual pigments and melanopsin. J Neurochem 105(3):883–890

    Article  CAS  PubMed  Google Scholar 

  • Terakita A, Kawano-Yamashita E, Koyanagi M (2012) Evolution and diversity of opsins. Wiley Interdiscip Rev Membr Transp Signal 1(1):104–111

    Article  CAS  Google Scholar 

  • Tsukamoto H, Terakita A (2010) Diversity and functional properties of bistable pigments. Photochem Photobiol Sci 9(11):1435–1443

    Article  CAS  PubMed  Google Scholar 

  • Velarde RA, Sauer CD, Walden KK et al (2005) Pteropsin: a vertebrate-like non-visual opsin expressed in the honey bee brain. Insect Biochem Mol Biol 35(12):1367–1377

    Article  CAS  PubMed  Google Scholar 

  • Wakakuwa M, Terakita A, Koyanagi M et al (2010) Evolution and mechanism of spectral tuning of blue-absorbing visual pigments in butterflies. PLoS One 5(11):e15015

    Article  PubMed Central  PubMed  Google Scholar 

  • Yau KW, Hardie RC (2009) Phototransduction motifs and variations. Cell 139(2):246–264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zalocusky K, Deisseroth K (2013) Optogenetics in the behaving rat: integration of diverse new technologies in a vital animal model. Optogenetics 1:1–17

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants-in-aid for Scientific Research from the Japanese Ministry of Education, Science, Sports and Culture (to A. T. and M. K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihisa Terakita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Terakita, A., Nagata, T., Sugihara, T., Koyanagi, M. (2015). Optogenetic Potentials of Diverse Animal Opsins. In: Yawo, H., Kandori, H., Koizumi, A. (eds) Optogenetics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55516-2_6

Download citation

Publish with us

Policies and ethics