Skip to main content

Supramolecular Porphyrin Nanorods for Light Energy Conversion

  • Chapter
Chemical Science of π-Electron Systems

Abstract

Recent developments of supramolecular bar-shaped molecular architectures of porphyrins are widely described. The utilization of synthetic and supramolecular techniques enables one to effectively organize molecular aggregates, which possess light energy conversion functionalities such as light harvesting, charge separation, and carrier transport. In the photovoltaic and photocalytic (hydrogen evolution) measurements, these highly organized architectures quantitatively exhibit drastic enhancements of light energy conversion properties as compared to the reference non-organized system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dennler G, Scharber MC, Brabec CJ (2009) Polymer-fullerene bulk-heterojunction solar cells. Adv Mater 21(13):1323–1338

    Article  CAS  Google Scholar 

  2. Grätzel M (2009) Recent advances in sensitized mesoscopic solar cells. Acc Chem Res 42(11):1788–1798

    Article  Google Scholar 

  3. Kamat PV, Tvrdy K, Baker DR, Radich JG (2010) Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells. Chem Rev 110(11):6664–6688

    Article  CAS  Google Scholar 

  4. Gunes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107(4):1324–1338

    Article  Google Scholar 

  5. Imahori H, Umeyama T, Ito S (2009) Large π-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells. Acc Chem Res 42(11):1809–1818

    Article  CAS  Google Scholar 

  6. Martinez-Diaz MV, de la Torre G, Torres T (2010) Lighting porphyrins and phthalocyanines for molecular photovoltaics. Chem Commun 46(38):7090–7108

    Article  CAS  Google Scholar 

  7. McEvoy JP, Brudvig GW (2006) Water-splitting chemistry of photosystem ii. Chem Rev 106(11):4455–4483

    Article  CAS  Google Scholar 

  8. Yamada Y, Miyahigashi T, Kotani H, Ohkubo K, Fukuzumi S (2012) Photocatalytic hydrogen evolution with ni nanoparticles by using 2-phenyl-4-(1-naphthyl)quinolinium ion as a photocatalyst. Energy Environ Sci 5(3):6111–6118

    Article  CAS  Google Scholar 

  9. Maeda K, Domen K (2010) Photocatalytic water splitting: recent progress and future challenges. J Phys Chem Lett 1(18):2655–2661

    Article  CAS  Google Scholar 

  10. Kubacka A, Fernández-García M, Colón G (2011) Advanced nanoarchitectures for solar photocatalytic applications. Chem Rev 112(3):1555–1614

    Article  Google Scholar 

  11. Hasobe T (2013) Porphyrin-based supramolecular nanoarchitectures for solar energy conversion. J Phys Chem Lett 4:1771–1780

    Article  CAS  Google Scholar 

  12. Hasobe T (2010) Supramolecular nanoarchitectures for light energy conversion. Phys Chem Chem Phys 12(1):44–57

    Article  CAS  Google Scholar 

  13. Kalyanasundaram K, Kiwi J, Grätzel M (1978) Hydrogen evolution from water by visible light, a homogeneous three component test system for redox catalysis. Helv Chim Acta 61(7):2720–2730

    Article  CAS  Google Scholar 

  14. Barber J (2009) Photosynthetic energy conversion: natural and artificial. Chem Soc Rev 38(1):185–196

    Article  CAS  Google Scholar 

  15. Ozawa H, Sakai K (2011) Photo-hydrogen-evolving molecular devices driving visible-light-induced water reduction into molecular hydrogen: structure-activity relationship and reaction mechanism. Chem Commun 47(8):2227–2242

    Article  CAS  Google Scholar 

  16. Hasobe T, Sakai H (2013) Preparation and photoelectrochemical properties of supramolecular assemblies of nanoscale carbon material composites. ECS J Solid State Sci Technol 2(10):M3015–M3022

    Article  CAS  Google Scholar 

  17. Hasobe T (2012) Photo- and electro-functional self-assembled architectures of porphyrins. Phys Chem Chem Phys 14(46):15975–15987

    Article  CAS  Google Scholar 

  18. Imahori H, Yamada H, Guldi DM, Endo Y, Shimomura A, Kundu S, Yamada K, Okada T, Sakata Y, Fukuzumi S (2002) Comparison of reorganization energies for intra- and intermolecular electron transfer. Angew Chem Int Ed 41(13):2344–2347

    Article  CAS  Google Scholar 

  19. Araki Y, Ito O (2008) Factors controlling lifetimes of photoinduced charge-separated states of fullerene-donor molecular systems. J Photochem Photobiol C Photochem Rev 9(3):93–110

    Article  CAS  Google Scholar 

  20. Gust D, Moore TA, Moore AL (2001) Mimicking photosynthetic solar energy transduction. Acc Chem Res 34(1):40–48

    Article  CAS  Google Scholar 

  21. Drain CM, Smeureanu G, Patel S, Gong X, Garnod J, Arijeloyea J (2006) Porphyrin nanoparticles as supramolecular systems. New J Chem 30:1834–1843

    Article  CAS  Google Scholar 

  22. Gong X, Milic T, Xu C, Batteas JD, Drain CM (2002) Preparation and characterization of porphyrin nanoparticles. J Am Chem Soc 124(48):14290–14291

    Article  CAS  Google Scholar 

  23. Drain CM, Varotto A, Radivojevic I (2009) Self-organized porphyrinic materials. Chem Rev 109(5):1630–1658

    Article  CAS  Google Scholar 

  24. Radivojevic I, Likhtina I, Shi X, Singh S, Drain CM (2010) Self-organized nanofibers and nanorods of porphyrins bearing hydrogen bonding motifs. Chem Commun 46(10):1643–1645

    Article  CAS  Google Scholar 

  25. Medforth CJ, Wang Z, Martin KE, Song Y, Jacobsen JL, Shelnutt JA (2009) Self-assembled porphyrin nanostructures. Chem Commun 47:7261–7277

    Article  Google Scholar 

  26. Wang Z, Ho KJ, Medforth CJ, Shelnutt JA (2006) Porphyrin nanofiber bundles from phase-transfer ionic self-assembly and their photocatalytic self-metallization. Adv Mater 18(19):2557–2560

    Article  CAS  Google Scholar 

  27. Wang H, Song Y, Medforth CJ, Shelnutt JA (2006) Interfacial synthesis of dendritic platinum nanoshells templated on benzene nanodroplets stabilized in water by a photocatalytic lipoporphyrin. J Am Chem Soc 128(29):9284–9285

    Article  CAS  Google Scholar 

  28. Wang Z, Li Z, Medforth CJ, Shelnutt JA (2007) Self-assembly and self-metallization of porphyrin nanosheets. J Am Chem Soc 129(9):2440–2441

    Article  CAS  Google Scholar 

  29. Martin KE, Wang Z, Busani T, Garcia RM, Chen Z, Jiang Y, Song Y, Jacobsen JL, Vu TT, Schore NE, Swartzentruber BS, Medforth CJ, Shelnutt JA (2010) Donor–acceptor biomorphs from the ionic self-assembly of porphyrins. J Am Chem Soc 132(23):8194–8201

    Article  CAS  Google Scholar 

  30. Wang Z, Medforth CJ, Shelnutt JA (2004) Self-metallization of photocatalytic porphyrin nanotubes. J Am Chem Soc 126(51):16720–16721

    Article  CAS  Google Scholar 

  31. Wang Z, Medforth CJ, Shelnutt JA (2004) Porphyrin nanotubes by ionic self-assembly. J Am Chem Soc 126(49):15954–15955

    Article  CAS  Google Scholar 

  32. Lee SJ, Hupp JT, Nguyen ST (2008) Growth of narrowly dispersed porphyrin nanowires and their hierarchical assembly into macroscopic columns. J Am Chem Soc 130(30):9632–9633

    Article  CAS  Google Scholar 

  33. Lee SJ, Mulfort KL, Zuo X, Goshe AJ, Wesson PJ, Nguyen ST, Hupp JT, Tiede DM (2008) Coordinative self-assembly and solution-phase x-ray structural characterization of cavity-tailored porphyrin boxes. J Am Chem Soc 130(3):836–838

    Article  CAS  Google Scholar 

  34. Lee SJ, Jensen RA, Malliakas CD, Kanatzidis MG, Hupp JT, Nguyen ST (2008) Effect of secondary substituent on the physical properties, crystal structures, and nanoparticle morphologies of (porphyrin)sn(oh)2: diversity enabled via synthetic manipulations. J Mater Chem 18(31):3640–3642

    Article  CAS  Google Scholar 

  35. Harada R, Matsuda Y, Okawa H, Kojima T (2004) A porphyrin nanotube: size-selective inclusion of tetranuclear molybdenum–oxo clusters. Angew Chem Int Ed 43(14):1825–1828

    Article  CAS  Google Scholar 

  36. Fukuzumi S, Kojima T (2008) Photofunctional nanomaterials composed of multiporphyrins and carbon-based p-electron acceptors. J Mater Chem 18(30):1427–1439

    Article  CAS  Google Scholar 

  37. Hu JS, Guo YG, Liang HP, Wan LJ, Jiang L (2005) Three-dimensional self-organization of supramolecular self-assembled porphyrin hollow hexagonal nanoprisms. J Am Chem Soc 127(48):17090–17095

    Article  CAS  Google Scholar 

  38. Wang Z, Lybarger LE, Wang W, Medforth CJ, Miller JE, Shelnutt JA (2008) Monodisperse porphyrin nanospheres synthesized by coordination polymerization. Nanotechnology 19(39):395604

    Article  Google Scholar 

  39. Floris H, Cameron CL, Marko MLN, Jeroen CG, Peter CMC, Antje L, George F, Philippe ELGL, Albertus PHJS, Meijer EW (2010) Dilution-induced self-assembly of porphyrin aggregates: a consequence of coupled equilibria. Angew Chem Int Ed 49(23):3939–3942

    Article  Google Scholar 

  40. Ozawa H, Tanaka H, Kawao M, Uno S, Nakazato K (2009) Preparation of organic nanoscrews from simple porphyrin derivatives. Chem Commun 47:7411–7413

    Article  Google Scholar 

  41. Elemans JAAW, Rv H, Nolte RJM, Rowan AE (2006) Molecular materials by self-assembly of porphyrins, phthalocyanines, and perylenes. Adv Mater 18(10):1251–1266

    Article  CAS  Google Scholar 

  42. van Hameren R, Schon P, van Buul AM, Hoogboom J, Lazarenko SV, Gerritsen JW, Engelkamp H, Christianen PCM, Heus HA, Maan JC, Rasing T, Speller S, Rowan AE, Elemans JAAW, Nolte RJM (2006) Macroscopic hierarchical surface patterning of porphyrin trimers via self-assembly and dewetting. Science 314(5804):1433–1436

    Article  Google Scholar 

  43. Lensen MC, Elemans JAAW, Dingenen SJTV, Gerritsen JW, Speller S, Rowan AE, Nolte RJM (2007) Giant porphyrin disks: control of their self-assembly at liquid-solid interfaces through metal-ligand interactions. Chem Eur J 13(28):7948–7956

    Article  CAS  Google Scholar 

  44. de Pieter AJ, Witte CM, Cornelissen JJLM, Scolaro LM, Nolte RJM, Rowan AE (2003) Helical polymer-anchored porphyrin nanorods. Chem Eur J 9(8):1775–1781

    Article  Google Scholar 

  45. Lensen MC, Takazawa K, Elemans JAAW, Jeukens CRLPN, Christianen PCM, Maan JC, Rowan AE, Nolte RJM (2004) Aided self-assembly of porphyrin nanoaggregates into ring-shaped architectures. Chem Eur J 10(4):831–839

    Article  CAS  Google Scholar 

  46. Hasobe T, Oki H, Sandanayaka ASD, Murata H (2008) Sonication-assisted supramolecular nanorods of meso-diaryl-substituted porphyrins. Chem Commun 6:724–726

    Article  Google Scholar 

  47. Hasobe T, Hattori S, Kamat PV, Urano Y, Umezawa N, Nagano T, Fukuzumi S (2005) Organization of supramolecular assemblies of fullerene, porphyrin and fluorescein dye derivatives on tio2 nanoparticles for light energy conversion. Chem Phys 319(1–3):243–252

    Article  CAS  Google Scholar 

  48. Makiura R, Motoyama S, Umemura Y, Yamanaka H, Sakata O, Kitagawa H (2010) Surface nano-architecture of a metal-organic framework. Nat Mater 9(7):565–571

    Article  CAS  Google Scholar 

  49. Motoyama S, Makiura R, Sakata O, Kitagawa H (2011) Highly crystalline nanofilm by layering of porphyrin metal-organic framework sheets. J Am Chem Soc 133(15):5640–5643

    Article  CAS  Google Scholar 

  50. Sakuma T, Sakai H, Hasobe T (2012) Preparation and structural control of metal coordination-assisted supramolecular architectures of porphyrins. Nanocubes to microrods. Chem Commun 48(37):4441–4443

    Article  CAS  Google Scholar 

  51. Sandanayaka ASD, Araki Y, Wada T, Hasobe T (2008) Structural and photophysical properties of self-assembled porphyrin nanoassemblies organized by ethylene glycol derivatives. J Phys Chem C 112(49):19209–19216

    Article  CAS  Google Scholar 

  52. Schlenker CW, Thompson ME (2011) The molecular nature of photovoltage losses in organic solar cells. Chem Commun 47(13):3702–3716

    Article  CAS  Google Scholar 

  53. Peet J, Heeger AJ, Bazan GC (2009) ‚äúplastic‚äù solar cells: self-assembly of bulk heterojunction nanomaterials by spontaneous phase separation. Acc Chem Res 42(11):1700–1708

    Article  CAS  Google Scholar 

  54. Sun S-S, Sariciftci NS (2005) Organic photovoltaics. Taylor & Francis, Boca Raton

    Google Scholar 

  55. Sandanayaka ASD, Murakami T, Hasobe T (2009) Preparation and photophysical and photoelectrochemical properties of supramolecular porphyrin nanorods structurally controlled by encapsulated fullerene derivatives. J Phys Chem C 113(42):18369–18378

    Article  CAS  Google Scholar 

  56. Hasobe T, Sandanayaka ASD, Wada T, Araki Y (2008) Fullerene-encapsulated porphyrin hexagonal nanorods. An anisotropic donor-acceptor composite for efficient photoinduced electron transfer and light energy conversion. Chem Commun (29):3372–3374

    Google Scholar 

  57. Hasobe T, Sakai H, Mase K, Ohkubo K, Fukuzumi S (2013) Remarkable enhancement of photocatalytic hydrogen evolution efficiency utilizing an internal cavity of supramolecular porphyrin hexagonal nanocylinders under visible-light irradiation. J Phys Chem C 117(9):4441–4449

    Article  CAS  Google Scholar 

  58. Hasobe T, Imahori H, Fukuzumi S, Kamat PV (2003) Nanostructured assembly of porphyrin clusters for light energy conversion. J Mater Chem 13:2515–2520

    Article  CAS  Google Scholar 

  59. Zhu X-Q, Yang Y, Zhang M, Cheng J-P (2003) First estimation of c4-bond dissociation energies of nadh and its radical cation in aqueous solution. J Am Chem Soc 125(50):15298–15299

    Article  CAS  Google Scholar 

  60. Kotani H, Hanazaki R, Ohkubo K, Yamada Y, Fukuzumi S (2011) Size- and shape-dependent activity of metal nanoparticles as hydrogen-evolution catalysts: Mechanistic insights into photocatalytic hydrogen evolution. Chem Eur J 17(9):2777–2785

    Article  CAS  Google Scholar 

  61. Imahori H, Kimura M, Hosomizu K, Sato T, Ahn TK, Kim SK, Kim D, Nishimura Y, Yamazaki I, Araki Y, Ito O, Fukuzumi S (2004) Vectorial electron relay at ito electrodes modified with self-assembled monolayers of ferrocene–porphyrin–fullerene triads and porphyrin–fullerene dyads for molecular photovoltaic devices. Chem Eur J 10(20):5111–5122

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The author thanks and expresses gratitude to his collaborators and coworkers whose names appear in the references. This work was partially supported by Grants-in-Aid for Scientific Research (23108721 & 23681025), PRESTO project, Japan Science and Technology Agency (JST), and MEXT-Supported Program for the Strategic Research Foundation at Private Universities, 2009–2013. All figures, schemes, and tables are reproduced from the related references with permission of the American Chemical Society and the Royal Society of Chemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taku Hasobe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Hasobe, T., Sakai, H. (2015). Supramolecular Porphyrin Nanorods for Light Energy Conversion. In: Akasaka, T., Osuka, A., Fukuzumi, S., Kandori, H., Aso, Y. (eds) Chemical Science of π-Electron Systems. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55357-1_28

Download citation

Publish with us

Policies and ethics