Skip to main content

αβ-T Cells

  • Chapter
  • First Online:
Immunotherapy of Cancer
  • 2227 Accesses

Abstract

Adoptive cell therapy using autologous αβ-T cells is one of the most effective treatments for various cancers and has minimal side effects. αβ-T cells have the ability to recognize the cancer antigens that present with human leukocyte antigen (HLA) molecules on the cancer cells and kill them by secreting several granules, such as perforin, granzyme, or granulysin. Several clinical effects have been defined in clinical trials, but standardized treatment approaches have not been established. Because of the difficulty of dealing with several regulations and the high costs, there have been very few large clinical trials. Even so, recent technical advances in such fields as genetic engineering may make it possible to cure various cancers using new candidates for αβ-T-cell therapy. It is expected that safe and effective αβ-T-cell therapy will be developed as a standard cancer therapy in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vacchelli E, Eggermont A, Fridman WH, Galon J, Tartour E, Zitvogel L et al (2013) Adoptive cell transfer for anticancer immunotherapy. Oncoimmunology. doi:10.4161/onci.24238

    Google Scholar 

  2. Aranda F, Vacchelli E, Obrist F, Eggermont A, Galon J, Fridman WH et al (2014) Adoptive cell transfer for anticancer immunotherapy. Oncoimmunology. doi:10.4161/onci.28344

    Google Scholar 

  3. Chung DS, Shin HJ, Hong YK (2014) A new hope immunotherapy for malignant gliomas: adoptive T cell transfer therapy. J Immunol Res. doi:10.1155/2014/326545

    Google Scholar 

  4. Xie F, Zhang X, Li H, Zheng T, Xu F, Shen R et al (2012) Adoptive immunotherapy in postoperative hepatocellular carcinoma: a systemic review. PLoS One. doi:10.1371/journal.pone.0042879

    Google Scholar 

  5. Cheever MA et al (2009) The prioritization of cancer antigens: a National Cancer Institute pilot project for the acceleration of translational research. Clin Cancer Res 15(17):5323–5337

    Article  PubMed  Google Scholar 

  6. Wu R, Forget MA, Chacon J, Bernatchez C, Haymaker C, Chen JQ et al (2012) Adoptive T-cell therapy using autologous tumor-infiltrating lymphocytes for metastatic melanoma: current status and future outlook. Cancer J 18(2):160–175. doi:10.1097/PPO.0b013e31824d4465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Kvistborg P, Shu CJ, Heemskerk B, Fankhauser M, Thre CA, Tobes M et al (2012) TIL therapy broadens the tumor-reactive CD8+ T cell compartment in melanoma patients. Oncoimmunology 1(4):409–418. doi:10.4161/onci.18851

    Article  PubMed Central  PubMed  Google Scholar 

  8. Goff SL, Smith FO, Klapper JA, Sherry R, Wunderlich JR, Steinberg SM et al (2013) Tumor infiltrating lymphocyte therapy for metastatic melanoma: analysis of tumors resected for TIL. J Immunother 33(8):840–847. doi:10.1097/CJI.0b013e3181f05b91

    Article  Google Scholar 

  9. Khammari A, Knol AC, Nguyen JM, Bossard C, Denis MG, Pandolfino MC et al (2014) Adoptive TIL transfer in the adjuvant setting of melanoma: long-term patient survival. J Immunol Res. doi:10.1155/2014/186212

    PubMed Central  PubMed  Google Scholar 

  10. Aruga A, Yamauchi K, Takasaki K, Furukawa T, Hanyu F (1991) Induction of autologous tumor-specific cytotoxic T cells in patients with liver cancer. Characterizations and clinical utilization. Int J Cancer 49:19–24

    Article  CAS  PubMed  Google Scholar 

  11. Toh U, Yamana H, Sueyoshi S, Tanaka T, Niiya F, Katagiri K et al (2000) Locoregional cellular immunotherapy for patients with advanced esophageal cancer. Clin Cancer Res 6:4663–4673

    CAS  PubMed  Google Scholar 

  12. Lutzky V, Crooks P, Morrison L, Stevens N, Davis JE, Corban M et al (2014) Cytotoxic T cell adoptive immunotherapy as a treatment for nasopharyngeal carcinoma. Clin Vac Immunol 21(2):256–259

    Article  Google Scholar 

  13. Yamaguchi Y, Ohta K, Kawabuchi Y, Ohshita A, Okita R, Okawaki M et al (2005) Feasibility study of adoptive immunotherapy for metastatic lung tumors using peptide-pulsed dendritic cell-activated killer (PDAK) cells. Anticancer Res 25:2407–2416

    CAS  PubMed  Google Scholar 

  14. Zhang Y, Wang J, Wang Y, Lu XC, Fan H, Liu Y et al (2013) Autologous CIK cell immunotherapy in patients with renal cell carcinoma after radical nephrectomy. Clin Dev Immunol. doi:10.1155/2013/195691

    Google Scholar 

  15. Ma H, Zhang Y, Wang Q, Li Y, He J, Wang H et al (2010) Therapeutic safety and effects of adjuvant autologous RetroNectin activated killer cell immunotherapy for patients with primary hepatocellular carcinoma after radiofrequency ablation. Cancer Biol Ther 9(11):903–907

    Article  CAS  PubMed  Google Scholar 

  16. Ishikawa T, Kokura S, Enoki T, Sakamoto N, Okayama T, Ideno M et al (2014) Phase I clinical trial of fibronectin CH296-stimulated T cell therapy in patients with advanced cancer. PLoS One. doi:10.1371/journal.pone.0083786

    Google Scholar 

  17. Teschner D, Wenzel G, Distler E, Schnurer E, Theobald M, Neurauter AA et al (2011) In vitro stimulation and expansion of human tumour-reactive CD8+ cytotoxic T lymphocytes by anti-CD3/CD28/CD137 magnetic beads. Scand J Immunol 74:155–164. doi:10.1111/j.1365-3083.2011.02564.x

    Article  CAS  PubMed  Google Scholar 

  18. Takayama T, Sekine T, Makuuchi M, Yamasaki S, Kosuge T, Yamamoto J et al (2000) Adoptive immunotherapy to lower postsurgical recurrence rates of hepatocellular carcinoma: a randomised trial. Lancet 356:802–807

    Article  CAS  PubMed  Google Scholar 

  19. Noguchi A, Kaneko T, Naitoh K, Saito M, Iwai K, Maekawa R et al (2014) Impaired and imbalanced cellular immunological status assessed in advanced cancer patients and restoration of the T cell immune status by adoptive T-cell immunotherapy. Int Immunopharmacol 18:90–97. doi:10.1016/j.intimp.2013.11.009

    Article  CAS  PubMed  Google Scholar 

  20. Chang AE, Aruga A, Cameron MJ, Sondak VK, Normolle DP, Fox BA et al (1997) Adoptive immunotherapy with vaccine-primed lymph node cells secondarily activated with anti-CD3 and interleukin-2. J Clin Oncol 15(2):796–807

    CAS  PubMed  Google Scholar 

  21. Chang AE, Li Q, Jiang G, Sayre DM, Braun TM, Redman BG (2003) Phase II trial of autologous tumor vaccination, anti-CD3^activated vaccine-primed lymphocytes, and interleukin-2 in stage IV renal cell cancer. J Clin Oncol 21(5):884–890. doi:10.1200/JCO.2003.08.023

    Article  CAS  PubMed  Google Scholar 

  22. Tanigawa K, Takeshita N, Eickhoff GA, Shimizu K, Chang AE (2001) Antitumor reactivity of lymph node cells primed in vivo with dendritic cell-based vaccines. J Immunother 24(6):493–501

    Article  CAS  PubMed  Google Scholar 

  23. Shimizu K, Kotera Y, Aruga A, Takeshita N, Takasaki K, Yamamoto M (2012) Clinical utilization of postoperative dendritic cell vaccine plus activated T-cell transfer in patients with intrahepatic cholangiocarcinoma. J Hepato-Biliary-Pancreat Sci 19:171–178. doi:10.1007/s00534-011-0437-y

    Article  Google Scholar 

  24. Shimizu K, Kotera Y, Aruga A, Takeshita N, Katagiri S, Ariizumi S et al (2014) Postoperative dendritic cell vaccine plus activated T-cell transfer improves the survival of patients with invasive hepatocellular carcinoma. Hum Vac Immunother. doi:10.4161/hv.27678

    Google Scholar 

  25. Poschke I, Lovgren T, Adamson L, Nystrom M, Andersson E, Hansson J et al (2014) A phase I clinical trial combining dendritic cell vaccination with adoptive T cell transfer in patients with stage IV melanoma. Cancer Immunol Immunother 63:1061–1071. doi:10.1007/s00262-014-1575-2

    Article  CAS  PubMed  Google Scholar 

  26. Niu J, Ren Y, Zhang T, Yang X, Zju W, Zhu H et al (2014) Retrospective comparative study of the effects of dendritic cell vaccine and cytokine-induced killer cell immunotherapy with that of chemotherapy alone and in combination for colorectal cancer. Biomed Res Int. doi:10.1155/2014/214727

    Google Scholar 

  27. Kandalaft LE, Powell EJ Jr, Chiang CL, Tnyi J, Kim S, Bosch M et al (2013) Autologous lysate-pulsed dendritic cell vaccination followed by adoptive transfer of vaccine^primed ex vivo co-stimulated T cells in recurrent ovarian cancer. Oncoimmunology 2:1. doi:10.4161/onci.22664

    Article  Google Scholar 

  28. Rapoport AP, Aqui NA, Stadtmauer EA, VOgi DT, Xu YY, Kalos M et al (2014) Combination immunotherapy after ASCT for multiple myeloma using MAGE-A3/Poly-ICLC immunizations followed by adoptive transfer of vaccine-primed and costimulated autologous T cells. Clin Cancer Res. doi:10.1158/1078-0432.CCR-13-2817

    PubMed Central  PubMed  Google Scholar 

  29. Shindo Y, Hazama S, Maeda Y, Matsui H, Iida M, Suzuki N et al (2014) Adoptive immunotherapy with MUC1-mRNA transfected dendritic cells and cytotoxic lymphocytes plus gemcitabine for unresectable pancreatic cancer. J Transl Med. doi:10.1186/1479-5876-12-175

    Google Scholar 

  30. Wolchok JD et al (2009) Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res 15(23):7412–7420

    Article  CAS  PubMed  Google Scholar 

  31. Chen TT (2013) Statistical issues and challenges in immuno-oncology. J Immunother Cancer 1:18

    Article  PubMed Central  PubMed  Google Scholar 

  32. Abastado JP (2012) The next challenge in cancer immunotherapy: controlling T-cell traffic to the tumor. Cancer Res 72(9):2159–2161. doi:10.1158/0008-5472.CAN-11-3538

    Article  CAS  PubMed  Google Scholar 

  33. Grupp SA, Kalos M, Barrett D et al (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368(16):1509–1518. doi:10.1056/NEJMoa1215134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF, Zheng Z et al (2013) Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother 36(2):133–151. doi:10.1097/CJI.0b013e3182829903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Buhmann R, Michael S, Juergen H, Horst L, Peschel C, Kolb HJ (2013) Immunotherapy with FBTA05(Bi20), a trifunctional bispecific anti-CD3 xanti-CD20 antibody and donor lymphocyte infusion (DLI) in relapsed or refractory B-cell lymphoma after allogeneic stem cell transplantation: study protocol of an investigator-driven, open-label, non-randomized, uncontrolled, dose-escalating Phase I/II-trial. J Transl Med. doi:10.1186/1479-5876-11-160

    PubMed Central  PubMed  Google Scholar 

  36. Thakur A, Schalk D, Sarkar SH, AL-Khadimi Z, Sarkar FH, Lum LG (2012) A Th1 cytokine-enriched microenvironment enhances tumor killing by activated T cells armed with bispecific antibodies and inhibits the development of myeloid-derived suppressor cells. Cancer Immunol Immunother 61:497–509. doi:10.1007/s00262-011-1116-1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Araki K, Noguchi Y, Hirouchi T, Yoshikawa E, Kataoka S, Silverni L et al (2000) Cancer regression induced by modified CTL therapy is regulated by HLA class II and class I antigens in Japanese patients with advanced cancer. Int J Oncol 17(6):1107–1118

    CAS  PubMed  Google Scholar 

  38. Vizcardo R, Masuda K, Yamada D, Ikawa T, Shimizu K, Fujii S et al (2013) Regeneration of human tumor antigen-specific T cells from iPSCs derived from mature CD8+ T cells. Cell Stem Cell 12(1):31–36. doi:10.1016/j.stem.2012.12.006

    Article  CAS  PubMed  Google Scholar 

  39. Nishimura T, Kaneko S, Kawana-Tachikawa A, Tajima Y, Goto H, Zhu D et al (2013) Generation of rejuvenated antigen-specific T cells by reprogramming to pluripotency and redifferentiation. Cell Stem Cell 12(1):114–126. doi:10.1016/j.stem.2012.11.002

    Article  CAS  PubMed  Google Scholar 

  40. Hara A, Sato D, Sahara Y (2014) New governmental regulatory system for stem cell-based therapies in Japan. Ther Innov Regul Sci. doi:10.1177/2168479014526877

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Aruga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Aruga, A. (2016). αβ-T Cells. In: Yamaguchi, Y. (eds) Immunotherapy of Cancer. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55031-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55031-0_5

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55030-3

  • Online ISBN: 978-4-431-55031-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics