Skip to main content

Inner Ear Stem Cells

  • Chapter
  • First Online:
Regenerative Medicine for the Inner Ear
  • 985 Accesses

Abstract

Mammalian inner ear has limited regenerative ability, and functional recovery does not occur after damage. However, recent studies indicated that the cells within the inner ear have the characteristics of stem cells, namely, capacity for self-renewal and pluripotency. Since the specific markers for inner ear stem cells have not been found, several methods have been used to detect inner ear stem cells, including sphere-forming assay, fluorescence-activated cell sorting (FACS), side population study, and analysis of slow-cycling cells or Wnt signaling in the inner ear. The potential candidates of cochlear stem cells are the supporting cells, the cells at lesser epithelial ridge (LER), the cells at greater epithelial ridge (GER), and the tympanic border cells. The number of stem cells in the inner ear is estimated to be very low and is reported to decrease dramatically with maturation. It is necessary to elucidate the regulatory mechanisms of inner ear stem cells, clarify the reasons behind the quiescence of inner ear stem cells, and identify the causative factors that influence the decrease in the number of inner ear stem cells with maturation, in order to facilitate future regeneration therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li H, Liu H, Heller S. Pluripotent stem cells from the adult mouse inner ear. Nat Med. 2003;9(10):1293–9.

    Google Scholar 

  2. Zhai S, Shi L, Wang BE, Zheng G, Song W, Hu Y, et al. Isolation and culture of hair cell progenitors from postnatal rat cochleae. J Neurobiol. 2005;65(3):282–93. doi:10.1002/neu.20190.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang Y, Zhai SQ, Shou J, Song W, Sun JH, Guo W, et al. Isolation, growth and differentiation of hair cell progenitors from the newborn rat cochlear greater epithelial ridge. J Neurosci Meth. 2007;164(2):271–9. doi:10.1016/j.jneumeth.2007.05.009.

    Article  CAS  Google Scholar 

  4. Oshima K, Grimm CM, Corrales CE, Senn P, Martinez Monedero R, Géléoc GS, et al. Differential distribution of stem cells in the auditory and vestibular organs of the inner ear. J Assoc Res Otolaryngol. 2007;8(1):18–31. doi:10.1007/s10162-006-0058-3.

    Article  PubMed Central  PubMed  Google Scholar 

  5. White PM, Doetzlhofer A, Lee YS, Groves AK, Segil N. Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells. Nature. 2006;441(7096):984–7.

    Google Scholar 

  6. Savary E, Hugnot JP, Chassigneux Y, Travo C, Duperray C, Van De Water T, et al. Distinct population of hair cell progenitors can be isolated from the postnatal mouse cochlea using side population analysis. Stem Cells. 2007;25(2):332–9.

    Google Scholar 

  7. Sinkkonen ST, Chai R, Jan TA, Hartman BH, Laske RD, Gahlen F, et al. Intrinsic regenerative potential of murine cochlear supporting cells. Sci Rep. 2011;1:26. doi:10.1038/srep00026.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Chai R, Kuo B, Wang T, Liaw EJ, Xia A, Jan TA, et al. Wnt signaling induces proliferation of sensory precursors in the postnatal mouse cochlea. Proc Natl Acad Sci U S A. 2012;109(21):8167–72. doi:10.1073/pnas.1202774109.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Shi F, Kempfle JS, Edge AS. Wnt-responsive Lgr5-expressing stem cells are hair cell progenitors in the cochlea. J Neurosci. 2012;32(28):9639–48. doi:10.1523/JNEUROSCI.1064-12.2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Jan TA, Chai R, Sayyid ZN, van Amerongen R, Xia A, Wang T, et al. Tympanic border cells are Wnt-responsive and can act as progenitors for postnatal mouse cochlear cells. Development. 2013;140(6):1196–206. doi:10.1242/dev.087528.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Taniguchi M, Yamamoto N, Nakagawa T, Ogino E, Ito J. Identification of tympanic border cells as slow-cycling cells in the cochlea. PLoS One. 2012;7(10):e48544.

    Google Scholar 

  12. Chen P, Segil N. p27(Kip1) links cell proliferation to morphogenesis in the developing organ of Corti. Development. 1999;126(8):1581–90.

    CAS  PubMed  Google Scholar 

  13. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med. 1996;183(4):1797–806.

    Article  CAS  PubMed  Google Scholar 

  14. Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med. 2001;7(9):1028–34. doi:10.1038/nm0901-1028.

    Article  CAS  PubMed  Google Scholar 

  15. Bunting KD. ABC transporters as phenotypic markers and functional regulators of stem cells. Stem Cells. 2002;20(1):11–20. doi:10.1634/stemcells.20-3-274.

    Article  CAS  PubMed  Google Scholar 

  16. Quesenberry P, Levitt L. Hematopoietic stem cells (second of three parts). N Engl J Med. 1979;301(15):819–23. doi:10.1056/NEJM197910113011505.

    Article  CAS  PubMed  Google Scholar 

  17. Taylor G, Lehrer MS, Jensen PJ, Sun TT, Lavker RM. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell. 2000;102(4):451–61.

    Google Scholar 

  18. Tsujimura A, Koikawa Y, Salm S, Takao T, Coetzee S, Moscatelli D, et al. Proximal location of mouse prostate epithelial stem cells: a model of prostatic homeostasis. J Cell Biol. 2002;157(7):1257–65.

    Google Scholar 

  19. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781–810. doi:10.1146/annurev.cellbio.20.010403.113126.

    Article  CAS  PubMed  Google Scholar 

  20. Zeng YA, Nusse R. Wnt proteins are self-renewal factors for mammary stem cells and promote their long-term expansion in culture. Cell Stem Cell. 2010;6(6):568–77. doi:10.1016/j.stem.2010.03.020.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Scadden DT. The stem-cell niche as an entity of action. Nature. 2006;441(7097):1075–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norio Yamamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Taniguchi, M., Yamamoto, N. (2014). Inner Ear Stem Cells. In: Ito, J. (eds) Regenerative Medicine for the Inner Ear. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54862-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54862-1_30

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54861-4

  • Online ISBN: 978-4-431-54862-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics