Skip to main content

Siglec Interactions with Pathogens

  • Reference work entry
  • First Online:
Glycoscience: Biology and Medicine

Abstract

Sialic acids are abundant acidic sugars decorating the cell surfaces of vertebrates and their close relatives, but rarely found in other taxa – with the striking exception of certain bacterial commensals and pathogens of vertebrates. Siglecs are a family of sialic acid recognizing receptors in mammals that mediate a variety of functions in different biological processes. The CD33-related Siglecs (CD33rSiglecs) are prominent on immune cells and play a role in distinguishing self and non-self by recognizing sialoglycans as “self-associated molecular patterns.” Some pathogenic microorganisms exploit this self-recognition system by molecular mimicry of ligands or by direct binding, thus averting detection and elimination by the innate immune system. A subset of CD33rSiglecs with cell-activating properties may have evolved to counter such exploitation by pathogens. In keeping with this, some show extreme sequence identity in their binding domains with respective inhibitory counterparts. Human null polymorphisms have been described for some CD33rSiglecs, which may be explained by counteracting evolutionary selective forces imposed by different pathogens. Two CD33rSiglecs appear to have been inactivated in our ancestors, just prior to the origin of the human species. Environmental factors associated with civilization may have also played a role in shaping the genetics and functions of these receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali SR, Fong J, Carlin AF, Busch TD, Linden R, Angata T, Areschoug T, Parast M, Varki N, Murray J, Nizet V, Varki A (2014) Siglec-5 and Siglec-14 are polymorphic paired receptors that modulate neutrophil and amnion signaling responses to Group B Streptococcus. J Exp Med 211 (in press)

    Google Scholar 

  • Angata T (2014) Roles of activating-type Siglecs on myeloid cell functions. J Phys Fit Sports Med 3 (in press)

    Google Scholar 

  • Angata T, Varki A (2002) Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem Rev 102:439–470

    Article  CAS  PubMed  Google Scholar 

  • Angata T, Margulies EH, Green ED, Varki A (2004) Large-scale sequencing of the CD33-related Siglec gene cluster in five mammalian species reveals rapid evolution by multiple mechanisms. Proc Natl Acad Sci U S A 101:13251–13256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angata T, Hayakawa T, Yamanaka M, Varki A, Nakamura M (2006) Discovery of Siglec-14, a novel sialic acid receptor undergoing concerted evolution with Siglec-5 in primates. FASEB J 20:1964–1973

    Article  CAS  PubMed  Google Scholar 

  • Angata T, Ishii T, Motegi T, Oka R, Taylor RE, Soto PC, Chang YC, Secundino I, Gao CX, Ohtsubo K, Kitazume S, Nizet V, Varki A, Gemma A, Kida K, Taniguchi N (2013) Loss of Siglec-14 reduces the risk of chronic obstructive pulmonary disease exacerbation. Cell Mol Life Sci 70:3199–3210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avril T, Wagner ER, Willison HJ, Crocker PR (2006) Sialic acid-binding immunoglobulin-like lectin 7 mediates selective recognition of sialylated glycans expressed on Campylobacter jejuni lipooligosaccharides. Infect Immun 74:4133–4141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bax M, Kuijf ML, Heikema AP, van Rijs W, Bruijns SC, Garcia-Vallejo JJ, Crocker PR, Jacobs BC, van Vliet SJ, van Kooyk Y (2011) Campylobacter jejuni lipooligosaccharides modulate dendritic cell-mediated T cell polarization in a sialic acid linkage-dependent manner. Infect Immun 79:2681–2689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao H, Lakner U, de Bono B, Traherne JA, Trowsdale J, Barrow AD (2008) SIGLEC16 encodes a DAP12-associated receptor expressed in macrophages that evolved from its inhibitory counterpart SIGLEC11 and has functional and non-functional alleles in humans. Eur J Immunol 38:2303–2315

    Article  CAS  PubMed  Google Scholar 

  • Carlin AF, Chang YC, Areschoug T, Lindahl G, Hurtado-Ziola N, King CC, Varki A, Nizet V (2009a) Group B streptococcus suppression of phagocyte functions by protein-mediated engagement of human Siglec-5. J Exp Med 206:1691–1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlin AF, Uchiyama S, Chang YC, Lewis AL, Nizet V, Varki A (2009b) Molecular mimicry of host sialylated glycans allows a bacterial pathogen to engage neutrophil Siglec-9 and dampen the innate immune response. Blood 113:3333–3336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang YC, Olson J, Beasley FC, Tung C, Zhang J, Crocker PR, Varki A, Nizet V (2014) Group B streptococcus engages an inhibitory Siglec through sialic acid mimicry to blunt innate immune and inflammatory responses in vivo. PLoS Pathog 10:e1003846

    Article  PubMed  PubMed Central  Google Scholar 

  • Crocker PR, Paulson JC, Varki A (2007) Siglecs and their roles in the immune system. Nat Rev Immunol 7:255–266

    Article  CAS  PubMed  Google Scholar 

  • Delputte PL, Nauwynck HJ (2004) Porcine arterivirus infection of alveolar macrophages is mediated by sialic acid on the virus. J Virol 78:8094–8101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erdmann H, Steeg C, Koch-Nolte F, Fleischer B, Jacobs T (2009) Sialylated ligands on pathogenic Trypanosoma cruzi interact with Siglec-E (sialic acid-binding Ig-like lectin-E). Cell Microbiol 11:1600–1611

    Article  CAS  PubMed  Google Scholar 

  • Heikema AP, Bergman MP, Richards H, Crocker PR, Gilbert M, Samsom JN, van Wamel WJ, Endtz HP, van Belkum A (2010) Characterization of the specific interaction between sialoadhesin and sialylated Campylobacter jejuni lipooligosaccharides. Infect Immun 78:3237–3246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones C, Virji M, Crocker PR (2003) Recognition of sialylated meningococcal lipopolysaccharide by siglecs expressed on myeloid cells leads to enhanced bacterial uptake. Mol Microbiol 49:1213–1225

    Article  CAS  PubMed  Google Scholar 

  • Khatua B, Bhattacharya K, Mandal C (2012) Sialoglycoproteins adsorbed by Pseudomonas aeruginosa facilitate their survival by impeding neutrophil extracellular trap through siglec-9. J Leukoc Biol 91:641–655

    Article  CAS  PubMed  Google Scholar 

  • Lajaunias F, Dayer JM, Chizzolini C (2005) Constitutive repressor activity of CD33 on human monocytes requires sialic acid recognition and phosphoinositide 3-kinase-mediated intracellular signaling. Eur J Immunol 35:243–251

    Article  CAS  PubMed  Google Scholar 

  • Lewis AL, Desa N, Hansen EE, Knirel YA, Gordon JI, Gagneux P, Nizet V, Varki A (2009) Innovations in host and microbial sialic acid biosynthesis revealed by phylogenomic prediction of nonulosonic acid structure. Proc Natl Acad Sci U S A 106:13552–13557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng KM, Ferreyra JA, Higginbottom SK, Lynch JB, Kashyap PC, Gopinath S, Naidu N, Choudhury B, Weimer BC, Monack DM, Sonnenburg JL (2013) Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 502:96–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padler-Karavani V, Hurtado-Ziola N, Chang YC, Sonnenburg JL, Ronaghy A, Yu H, Verhagen A, Nizet V, Chen X, Varki N, Varki A, Angata T (2014) Rapid evolution of binding specificities and expression patterns of inhibitory CD33-related Siglecs in primates. FASEB J 28:1280–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rempel H, Calosing C, Sun B, Pulliam L (2008) Sialoadhesin expressed on IFN-induced monocytes binds HIV-1 and enhances infectivity. PLoS One 3:e1967

    Article  PubMed  PubMed Central  Google Scholar 

  • Suenaga T, Satoh T, Somboonthum P, Kawaguchi Y, Mori Y, Arase H (2010) Myelin-associated glycoprotein mediates membrane fusion and entry of neurotropic herpesviruses. Proc Natl Acad Sci U S A 107:866–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Breedam W, Van Gorp H, Zhang JQ, Crocker PR, Delputte PL, Nauwynck HJ (2010) The M/GP(5) glycoprotein complex of porcine reproductive and respiratory syndrome virus binds the sialoadhesin receptor in a sialic acid-dependent manner. PLoS Pathog 6:e1000730

    Article  PubMed  PubMed Central  Google Scholar 

  • Varchetta S, Brunetta E, Roberto A, Mikulak J, Hudspeth KL, Mondelli MU, Mavilio D (2012) Engagement of siglec-7 receptor induces a pro-inflammatory response selectively in monocytes. PLoS One 7:e45821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varki A (2011) Since there are PAMPs and DAMPs, there must be SAMPs? Glycan “self-associated molecular patterns” dampen innate immunity, but pathogens can mimic them. Glycobiology 21:1121–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Mitra N, Secundino I, Banda K, Cruz P, Padler-Karavani V, Verhagen A, Reid C, Lari M, Rizzi E, Balsamo C, Corti G, De Bellis G, Longo L, Beggs W, Caramelli D, Tishkoff SA, Hayakawa T, Green ED, Mullikin JC, Nizet V, Bui J, Varki A (2012) Specific inactivation of two immunomodulatory SIGLEC genes during human evolution. Proc Natl Acad Sci U S A 109:9935–9940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamanaka M, Kato Y, Angata T, Narimatsu H (2009) Deletion polymorphism of SIGLEC14 and its functional implications. Glycobiology 19:841–846

    Article  CAS  PubMed  Google Scholar 

  • Yasui K, Angata T, Matsuyama N, Furuta RA, Kimura T, Okazaki H, Tani Y, Nakano S, Narimatsu H, Hirayama F (2011) Detection of anti-Siglec-14 alloantibodies in blood components implicated in nonhaemolytic transfusion reactions. Br J Haematol 153(6):794–796

    Article  PubMed  Google Scholar 

  • Zou Z, Chastain A, Moir S, Ford J, Trandem K, Martinelli E, Cicala C, Crocker P, Arthos J, Sun PD (2011) Siglecs facilitate HIV-1 infection of macrophages through adhesion with viral sialic acids. PLoS One 6:e24559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Angata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this entry

Cite this entry

Angata, T., Varki, A. (2015). Siglec Interactions with Pathogens . In: Taniguchi, N., Endo, T., Hart, G., Seeberger, P., Wong, CH. (eds) Glycoscience: Biology and Medicine. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54841-6_211

Download citation

Publish with us

Policies and ethics