Skip to main content

Pupil Size and Postoperative Visual Function

  • Chapter
  • First Online:
Cataract Surgery: Maximizing Outcomes Through Research
  • 868 Accesses

Abstract

It is known that pupil size also plays an important role in the visual outcomes of the surgical procedure. The smaller pupil size may have some advantages in its superiority for image formation, such as an increasing depth of focus, a decrease in higher-order aberrations, and a decrease in light scatter, all of which may partly offset the deleterious effects of reduced luminance and diffraction. Modern cataract surgery using newer phacoemulsification techniques has shown no significant adverse effect on postoperative pupil size, which allows us to predict the postoperative pupil size and visual performance. However, a greater variability in pupil size even in elderly patients indicates the clinical significance of the individual assessment of pupil size in cataract surgery. The postoperative visual function is significantly affected by the preoperative pupil size, and thus we can predict, to some extent, the postoperative visual performance of cataract patients in a clinical setting, if we can accurately measure the preoperative pupil size. Pupil diameter should be assessed dynamically with the open-view type of binocular infrared pupillometer, offering high reproducibility, under natural-viewing conditions. Pupil size plays an essential role in postoperative visual performance, not only in monofocal IOL-implanted eyes but also premium IOL (multifocal IOL, toric IOL, and aspheric IOL)-implanted eyes. Accordingly, we should pay much attention to the preoperative pupil size in order to acquire excellent visual outcomes and subsequent patient satisfaction after cataract surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Applegate RA. Glenn Fry award lecture 2002: wavefront sensing, ideal corrections, and visual performance. Optom Vis Sci. 2004;81:167–77.

    Article  PubMed  Google Scholar 

  2. Hayashi K, Hayashi H, Nakao F, Hayashi F. Correlation between papillary size and intraocular lens decentration and visual acuity of a zonal-progressive multifocal lens and a monofocal lens. Ophthalmology. 2001;108:2011–7.

    Article  PubMed  CAS  Google Scholar 

  3. Caporossi A, Martone G, Casprini F, Rapisarda L. Prospective randomized study of clinical performance of 3 aspheric and 2 spherical intraocular lenses in 250 eyes. J Refract Surg. 2007;23:639–48.

    PubMed  Google Scholar 

  4. Ito M, Shimizu K, Amano R, Handa T. Assessment of visual performance in pseudophakic monovision. J Cataract Refract Surg. 2009;35:710–4.

    Article  PubMed  Google Scholar 

  5. Oshika T, Tokunaga T, Samejima T, Miyata K, Kawana K, Kaji Y. Influence of pupil diameter on the relation between ocular higher-order aberration and contrast sensitivity after laser in situ keratomileusis. Invest Ophthalmol Vis Sci. 2006;47:1334–8.

    Article  PubMed  Google Scholar 

  6. Strang NC, Atchison DA, Woods RL. Effects of defocus and pupil size on human contrast sensitivity. Ophthalmic Physiol Opt. 1999;19:415–26.

    Article  PubMed  CAS  Google Scholar 

  7. Milsom PK, Till SJ, Rowlands G. The effect of ocular aberrations on retinal laser damage thresholds in the human eye. Health Phys. 2006;91:20–8.

    Article  PubMed  CAS  Google Scholar 

  8. Schwiegerling J. Theoretical limits to visual performance. Surv Ophthalmol. 2000;45:139–46.

    Article  PubMed  CAS  Google Scholar 

  9. Hersh PS, Schwartz-Goldstein BH. Corneal topography of phase III excimer laser photorefractive keratectomy. Characterization and clinical effects. Summit Photorefractive Keratectomy Topography Study Group. Ophthalmology. 1995;102:963–78.

    Article  PubMed  CAS  Google Scholar 

  10. Gibbens MV, Goel R, Smith SE. Effect of cataract extraction on the pupil response to mydriatics. Br J Ophthalmol. 1989;73:563–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Yap EY, Aung T, Fan RFT. Pupil abnormalities on the first postoperative day after cataract surgery. Int Ophthalmol. 1996;20:187–92.

    PubMed  Google Scholar 

  12. Koch DD, Samuelson SW, Villarreal VR, et al. Changes in pupil size induced by phacoemulsification and posterior chamber lens implantation: consequences for multifocal lenses. J Cataract Refract Surg. 1996;22:579–84.

    Article  PubMed  CAS  Google Scholar 

  13. Miyake K, Sugiyama S, Norimatsu I, Ozawa T. Prevention of cystoid macular edema after lens extraction by topical indomethacin (III). Radioimmunoassay measurement of prostaglandins in the aqueous during and after lens extraction procedures. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1978;209:83–8.

    Article  PubMed  CAS  Google Scholar 

  14. Bito LZ, Nichols RR, Baroody RA. A comparison of the miotic and inflammatory effects of biologically active polypeptides and prostaglandin E2 on the rabbit eye. Exp Eye Res. 1982;34:325–37.

    Article  PubMed  CAS  Google Scholar 

  15. Almegard B, Bill A. C-terminal calcitonin gene-related peptide fragments and vasopressin but not somatostatin-28 induce miosis in monkeys. Eur J Pharmacol. 1993;250:31–5.

    Article  PubMed  CAS  Google Scholar 

  16. Hayashi K, Hayashi H. Pupil size before and after phacoemulsification in nondiabetic and diabetic patients. J Cataract Refract Surg. 2004;30:2543–50.

    Article  PubMed  Google Scholar 

  17. Sobaci G, Erdem U, Uysal Y, Muftuoglu O. Changes in pupil size and centroid shift in eyes with uncomplicated in-the-bag IOL implantation. J Refract Surg. 2007;23:796–9.

    PubMed  Google Scholar 

  18. Zhang B, Amano R, Ito M, Shimizu K. Age-related changes in pupil diameter. Neuro-Ophthalmol Jpn. 2008;25:266–70.

    Article  Google Scholar 

  19. Birren JE, Casperson RC, Botwinick J. Age changes in pupil size. J Gerontol. 1955;5:216–25.

    Article  Google Scholar 

  20. Kadlecova V, Peleska M, Vasko A. Dependence on age of diameter of the pupil in the dark. Nature. 1958;82:1520–1.

    Article  Google Scholar 

  21. Seitz R. The dependence on age of the dilation of the dark-adapted pupil. Klin Mbl Augenheil. 1957;131:48–56.

    CAS  Google Scholar 

  22. Said FS, Sawires WS. Age dependence of changes in pupil diameter in the dark. Opt Acta. 1972;19:359–61.

    Article  Google Scholar 

  23. Korczyn AD, Laor N, Nemet P. Sympathetic pupillary tone in old age. Arch Ophthalmol. 1976;94:1905–6.

    Article  PubMed  CAS  Google Scholar 

  24. Lowenfeld IE. Pupillary changes related to age. In: Thompson HS, editor. Topics in neuro-ophthalmology. Baltimore: Williams & Wilkins; 1979. p. 124–50.

    Google Scholar 

  25. Koch DD, Samuelson SW, Haft EA, Merin LM. Pupillary size and responsiveness. Ophthalmology. 1991;98:1030–5.

    Article  PubMed  CAS  Google Scholar 

  26. Camellin M, Gambino F, Casaro S. Measurement of the spatial shift of the pupil center. J Cataract Refract Surg. 2005;31:1719–21.

    Article  PubMed  Google Scholar 

  27. Fry GA. The relation of pupil size to accommodation and convergence. Am J Optom. 1945;22:451–65.

    Article  Google Scholar 

  28. Marg E, Morgan MW. The pupillary near reflex: the relation of pupillary diameter to accommodation and various components of convergence. Am J Optom. 1949;26:183–98.

    Article  CAS  Google Scholar 

  29. Hess EH. Pupillometrics: a method of studying mental, emotional, and sensory processes. In: Greenfield NS, Sturnbach RA, editors. Handbook of psychophysiology. New York: Holt, Reinhardt and Winston; 1972. p. 491–534.

    Google Scholar 

  30. Wyatt HJ, Musselman JF. Pupillary light reflex in humans: evidence for an unbalanced pathway from nasal retina, and for signal cancellation in brain-stem. Vision Res. 1981;21:513–25.

    Article  PubMed  CAS  Google Scholar 

  31. Winn B, Whitaker D, Elliott DB, Phillips NJ. Factors affecting light-adapted pupil size in normal human subjects. Invest Ophthalmol Vis Sci. 1994;35:1132–7.

    PubMed  CAS  Google Scholar 

  32. Wickremasinghe SS, Smith GT, Stevens JD. Comparison of dynamic digital pupillometry and static measurements of pupil size in determining scotopic pupil size before refractive surgery. J Cataract Refract Surg. 2005;31:1171–6.

    Article  PubMed  Google Scholar 

  33. Kurz S, Krummenauer F, Pfeiffer N, Dick HB. Monocular versus binocular pupillometry. J Cataract Refract Surg. 2004;30:2551–6.

    Article  PubMed  Google Scholar 

  34. Nakamura K, Bissen-Miyajima H, Oki S, Onuma K. Pupil sizes in different Japanese age groups and the implications for intraocular lens choice. J Cataract Refract Surg. 2009;35:134–8.

    Article  PubMed  Google Scholar 

  35. Kawamorita T, Uozato H. Modulation transfer function and pupil size in multifocal and monofocal intraocular lenses in vitro. J Cataract Refract Surg. 2005;31:2379–85.

    Article  PubMed  Google Scholar 

  36. Kamiya K, Kobashi H, Shimizu K, Kawamorita T, Uozato H. Effect of pupil size on uncorrected visual acuity in astigmatic eyes. Br J Ophthalmol. 2012;96:267–70.

    Article  PubMed  Google Scholar 

  37. Watanabe K, Negishi K, Dogru M, Yamaguchi T, Torii H, Tsubota K. Effect of pupil size on uncorrected visual acuity in pseudophakic eyes with astigmatism. J Refract Surg. 2013;29:25–9.

    Article  PubMed  Google Scholar 

  38. Pandita D, Raj SM, Vasavada VA, Vasavada VA, Kazi NS, Vasavada AR. Contrast sensitivity and glare disability after implantation of AcrySof IQ Natural aspherical intraocular lens: prospective randomized masked clinical trial. J Cataract Refract Surg. 2007;33(4):603–10.

    Article  PubMed  Google Scholar 

  39. Denoyer A, Le Lez ML, Majzoub S, Pisella PJ. Quality of vision after cataract surgery after Tecnis Z9000 intraocular lens implantation: effect of contrast sensitivity and wavefront aberration improvements on the quality of daily vision. J Cataract Refract Surg. 2007;33(2):210–6.

    Article  PubMed  Google Scholar 

  40. Sandoval HP, Ferna’ndez de Castro LE, Vroman DT, Solomon KD. Comparison of visual outcomes, photopic contrast sensitivity, wavefront analysis, and patient satisfaction following cataract extraction and IOL implantation: aspheric vs spherical acrylic lenses. Eye (Lond). 2008;22(12):1469–75.

    Article  CAS  Google Scholar 

  41. Tzelikis PF, Akaishi L, Trindade FC, Boteon JE. Spherical aberration and contrast sensitivity in eyes implanted with aspheric and spherical intraocular lenses: a comparative study. Am J Ophthalmol. 2008;145(5):827–33.

    Article  PubMed  Google Scholar 

  42. Yamaguchi T, Negishi K, Ono T, et al. Feasibility of spherical aberration correction with aspheric intraocular lenses in cataract surgery based on individual pupil diameter. J Cataract Refract Surg. 2009;35(10):1725–33.

    Article  PubMed  Google Scholar 

  43. Eom Y, Yoo E, Kang SY, Kim HM, Song JS. Change in efficiency of aspheric intraocular lenses based on pupil diameter. Am J Ophthalmol. 2013;155:492–8. e2.

    Article  PubMed  Google Scholar 

  44. Solomon R, Barsam A, Voldman A, Holladay J, Bhogal M, Perry HD, Donnenfeld ED. Argon laser iridoplasty to improve visual function following multifocal intraocular lens implantation. J Refract Surg. 2012;28:281–3.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazutaka Kamiya M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Kamiya, K. (2014). Pupil Size and Postoperative Visual Function. In: Bissen-Miyajima, H., Koch, D., Weikert, M. (eds) Cataract Surgery: Maximizing Outcomes Through Research. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54538-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54538-5_1

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54537-8

  • Online ISBN: 978-4-431-54538-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics