Skip to main content

Mannosidase, Alpha, Class 2a1 (MAN2A1, Golgi α-Mannosidase II)

  • Reference work entry
  • First Online:
Handbook of Glycosyltransferases and Related Genes

Abstract

Maturation of N-glycans from oligomannose to complex-type structures on cellular and secreted proteins is essential for the roles that these structures play in cell adhesion and recognition events in metazoan organisms (Haltiwanger and Lowe 2004; Moremen et al. 2012; Varki 1993). Critical steps in the N-glycan biosynthetic pathway include the trimming of glucose and mannose residues by processing α-glucosidases and α-mannosidases in the endoplasmic reticulum (ER) and Golgi complex to result in the Man3GlcNAc2 core structure necessary for conversion to complex-type N-glycans (Aebi et al. 2010; Moremen 2000; Moremen and Touster 1988, Moremen et al. 1994, 2012). The mammalian exo-α-mannosidases comprise two separate families of enzymes (CAZy glycosylhydrolase families 38 (GH38) and 47 (GH47) (Coutinho et al. 2003; Coutinho and Henrissat 1999)) that are distinguished by differences in sequence, protein structural domains, enzymatic characteristics, and catalytic mechanisms (Moremen 2000; Moremen and Touster 1988; Moremen and Molinari 2006; Moremen et al. 1994). The ER α-glucosidases (Roth et al. 2010) and GH47 α-mannosidases (Moremen and Molinari 2006) act to trim early glycan processing intermediates to Man5GlcNAc2-Asn structures prior to the action of MGAT1, which adds a single GlcNAc residue to the α1,3 branch of the tri-mannosyl core (Schachter 1991, 2000) (Fig. 116.1). Members of GH38, including Golgi a-mannosidase II and Golgi α-mannosidase IIx, reside in the Golgi complex (Igdoural et al. 1999) and act to cleave two additional terminal mannose residues (Man-α1,3Man and Man-α1,6Man) to yield the GlcNAcMan3GlcNAc2-Asn intermediate necessary for processing to complex-type structures (Moremen 2000, 2002; Moremen and Touster 1988). Other mammalian members the GH38 family of enzymes are catabolic enzymes in lysosomes and cytosol. This chapter is focused on the Golgi processing enzyme, Golgi α-mannosidase II (also known as α1,3-(α1,6)-mannosidase II, N-acetylglucosamine (GlcNAc) transferase I-dependent α1,3(α1,6)-mannosidase, mannosyl-oligosaccharide 1,3-1,6-α-mannosidase, and 1,3-(1,6)mannosyl-oligosaccharide α-d-mannohydrolase), and its roles in N-glycan maturation in the Golgi complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aebi M, Bernasconi R, Clerc S, Molinari M (2010) N-glycan structures: recognition and processing in the ER. Trends Biochem Sci 35:74–82

    Article  CAS  PubMed  Google Scholar 

  • Akama TO, Nakagawa H, Wong NK, Sutton-Smith M, Dell A, Morris HR, Nakayama J, Nishimura S, Pai A, Moremen KW, Marth JD, Fukuda MN (2006) Essential and mutually compensatory roles of alpha-mannosidase II and alpha-mannosidase IIx in N-glycan processing in vivo in mice. Proc Natl Acad Sci USA 103:8983–8988

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baron MD, Garoff H (1990) Mannosidase II and the 135-kDa Golgi-specific antigen recognized monoclonal antibody 53FC3 are the same dimeric protein. J Biol Chem 265:19928–19931

    CAS  PubMed  Google Scholar 

  • Bianchi P, Fermo E, Vercellati C, Boschetti C, Barcellini W, Iurlo A, Marcello AP, Righetti PG, Zanella A (2009) Congenital dyserythropoietic anemia type II (CDAII) is caused by mutations in the SEC23B gene. Hum Mutat 30:1292–1298

    Article  CAS  PubMed  Google Scholar 

  • Chui D, Oh-Eda M, Liao YF, Panneerselvam K, Lal A, Marek KW, Freeze HH, Moremen KW, Fukuda MN, Marth JD (1997) α-Mannosidase-II deficiency results in dyserythropoiesis and unveils an alternate pathway in oligosaccharide biosynthesis. Cell 90:157–167

    Article  CAS  PubMed  Google Scholar 

  • Chui D, Sellakumar G, Green R, Sutton-Smith M, McQuistan T, Marek K, Morris H, Dell A, Marth J (2001) Genetic remodeling of protein glycosylation in vivo induces autoimmune disease. Proc Natl Acad Sci USA 98:1142–1147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coleman DJ, Kuntz DA, Venkatesan M, Cook GM, Williamson SP, Rose DR, Naleway JJ (2010) A long-wavelength fluorescent substrate for continuous fluorometric determination of alpha-mannosidase activity: resorufin alpha-d-mannopyranoside. Anal Biochem 399:7–12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coutinho PM, Henrissat B (1999) Carbohydrate-active enzymes: an integrated database approach. In: Gilbert HJ, Davies G, Henrissat B, Svensson B (eds) Recent advances in carbohydrate bioengineering. The Royal Society of Chemistry, Cambridge, pp 3–12

    Google Scholar 

  • Coutinho PM, Deleury E, Davies GJ, Henrissat B (2003) An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 328:307–317

    Article  CAS  PubMed  Google Scholar 

  • Daniel PF, Warren CD, James LF (1984) Swainsonine-induced oligosaccharide excretion in sheep. Time-dependent changes in the oligosaccharide profile. Biochem J 221:601–607

    CAS  PubMed  Google Scholar 

  • Dennis JW (1986) Effects of swainsonine and polyinosinic:polycytidylic acid on murine tumor cell growth and metastasis. Cancer Res 46:5131–5136

    CAS  PubMed  Google Scholar 

  • Dennis JW, Koch K, Beckner D (1989) Inhibition of human HT29 colon carcinoma growth in vitro and in vivo by swainsonine and human interferon-alpha 2. J Natl Cancer Inst 81:1028–1033

    Article  CAS  PubMed  Google Scholar 

  • Dennis JW, Koch K, Yousefi S, VanderElst I (1990) Growth inhibition of human melanoma tumor xenografts in athymic nude mice by swainsonine. Cancer Res 50:1867–1872

    CAS  PubMed  Google Scholar 

  • Dennis JW, White SL, Freer AM, Dime D (1993) Carbonoyloxy analogs of the anti-metastatic drug swainsonine. Activation in tumor cells by esterases. Biochem Pharmacol 46:1459–1466

    Article  CAS  PubMed  Google Scholar 

  • Dennis JW, Granovsky M, Warren CE (1999a) Glycoprotein glycosylation and cancer progression. Biochim Biophys Acta 1473:21–34

    Article  CAS  PubMed  Google Scholar 

  • Dennis JW, Granovsky M, Warren CE (1999b) Protein glycosylation in development and disease. Bioessays 21:412–421

    Article  CAS  PubMed  Google Scholar 

  • Dewald B, Touster O (1973) A new α-d-mannosidase occurring in Golgi membranes. J Biol Chem 248:7223–7233

    CAS  PubMed  Google Scholar 

  • Dorling PR, Huxtable CR, Colegate SM (1980) Inhibition of lysosomal alpha-mannosidase by swainsonine, an indolizidine alkaloid isolated from Swainsona canescens. Biochem J 191:649–651

    CAS  PubMed  Google Scholar 

  • Elbein A (1991) Glycosidase inhibitors: inhibitors of N-linked oligosaccharide processing. FASEB J 5:3055–3063

    CAS  PubMed  Google Scholar 

  • Elbein AD, Solf R, Dorling PR, Vosbeck K (1981) Swainsonine: an inhibitor of glycoprotein processing. Proc Natl Acad Sci USA 78:7393–7397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Elbein AD, Dorling PR, Vosbeck K, Horisberger M (1982) Swainsonine prevents the processing of the oligosaccharide chains of influenza virus hemagglutinin. J Biol Chem 257:1573–1576

    CAS  PubMed  Google Scholar 

  • Fiaux H, Kuntz DA, Hoffman D, Janzer RC, Gerber-Lemaire S, Rose DR, Juillerat-Jeanneret L (2008) Functionalized pyrrolidine inhibitors of human type II alpha-mannosidases as anti-cancer agents: optimizing the fit to the active site. Bioorg Med Chem 16:7337–7346

    Article  CAS  PubMed  Google Scholar 

  • Foster JM, Yudkin B, Lockyer AE, Roberts DB (1995) Cloning and sequence analysis of GmII, a Drosophila melanogaster homologue of the cDNA encoding murine Golgi α-mannosidase II. Gene 154:183–186

    Article  CAS  PubMed  Google Scholar 

  • Fukuda MN (1993) Congenital dyserythropoietic anaemia type II (HEMPAS) and its molecular basis. Baillieres Clin Haematol 6:493–511

    Article  CAS  PubMed  Google Scholar 

  • Fukuda MN (1999) HEMPAS. Hereditary erythroblastic multinuclearity with positive acidified serum lysis test. Biochim Biophys Acta 1455:231–239

    Article  CAS  PubMed  Google Scholar 

  • Fukuda MN, Akama TO (2002) In vivo role of alpha-mannosidase IIx: ineffective spermatogenesis resulting from targeted disruption of the Man2a2 in the mouse. Biochim Biophys Acta 1573:382–387

    Article  CAS  PubMed  Google Scholar 

  • Fukuda MN, Masri KA, Dell A, Luzzatto L, Moremen KW (1990) Incomplete synthesis of N-glycans in congenital dyserythropoietic anemia type II caused by a defect in the gene encoding α-mannosidase II. Proc Natl Acad Sci USA 87:7443–7447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goss PE, Baker MA, Carver JP, Dennis JW (1995) Inhibitors of carbohydrate processing: a new class of anticancer agents. Clin Cancer Res 1:935–944

    CAS  PubMed  Google Scholar 

  • Goss PE, Reid CL, Bailey D, Dennis JW (1997) Phase IB clinical trial of the oligosaccharide processing inhibitor swainsonine in patients with advanced malignancies. Clin Cancer Res 3:1077–1086

    CAS  PubMed  Google Scholar 

  • Haltiwanger RS, Lowe JB (2004) Role of glycosylation in development. Annu Rev Biochem 73:491–537

    Article  CAS  PubMed  Google Scholar 

  • Harpaz N, Schachter H (1980) Control of glycoprotein synthesis: processing of asparagine-linked oligosaccharides by one or more rat liver Golgi α-d-mannosidases dependent on the prior action of UDP-N-Acetylglucosamine: α-d-mannoside β2-N-acetylglucosaminyltransferase I. J Biol Chem 255:4894–4902

    CAS  PubMed  Google Scholar 

  • Heikinheimo P, Helland R, Leiros HK, Leiros I, Karlsen S, Evjen G, Ravelli R, Schoehn G, Ruigrok R, Tollersrud OK, McSweeney S, Hough E (2003) The structure of bovine lysosomal alpha-mannosidase suggests a novel mechanism for low-pH activation. J Mol Biol 327:631–644

    Article  CAS  PubMed  Google Scholar 

  • Igdoural SA, Herscovics A, Lal A, Moremen KW, Morales CR, Hermo L (1999) α-Mannosidases involved in N-glycan processing show cell specificity and distinct subcompartmentalization within the Golgi apparatus of cells in the testis and epididymis. E J Cell Biol 78:441–452

    Google Scholar 

  • Iolascon A, De Mattia D, Perrotta S, Carella M, Gasparini P, Lambertenghi Deliliers G (1998) Genetic heterogeneity of congenital dyserythropoietic anemia type II. Blood 92:2593–2594

    CAS  PubMed  Google Scholar 

  • Iolascon A, Delaunay J, Wickramasinghe SN, Perrotta S, Gigante M, Camaschella C (2001) Natural history of congenital dyserythropoietic anemia type II. Blood 98:1258–1260

    Article  CAS  PubMed  Google Scholar 

  • Jarvis DL, Bohlmeyer DA, Liao YF, Lomax KK, Merkle RK, Weinkauf C, Moremen KW (1997) Isolation and characterization of a class II α-mannosidase cDNA from lepidopteran insect cells. Glycobiology 7:113–127

    Article  CAS  PubMed  Google Scholar 

  • Kaushal GP, Szumilo T, Pastuszak I, Elbein AD (1990) Purification to homogeneity and properties of mannosidase II from mung bean seedlings. Biochemistry 29:2168–2176

    Article  CAS  PubMed  Google Scholar 

  • Kawatkar SP, Kuntz DA, Woods RJ, Rose DR, Boons GJ (2006) Structural basis of the inhibition of Golgi alpha-mannosidase II by mannostatin A and the role of the thiomethyl moiety in ligand-protein interactions. J Am Chem Soc 128:8310–8319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kornfeld S, Li E, Tabas I (1978) The synthesis of complex-type oligosaccharides. II. Characterization of the processing intermediates in the synthesis of the complex oligosaccharide units of the vesicular stomatitis virus G protein. J Biol Chem 253:7771–7778

    CAS  PubMed  Google Scholar 

  • Kumar NS, Kuntz DA, Wen X, Pinto BM, Rose DR (2008) Binding of sulfonium-ion analogues of di-epi-swainsonine and 8-epi-lentiginosine to Drosophila Golgi alpha-mannosidase II: the role of water in inhibitor binding. Proteins 71:1484–1496

    Article  CAS  PubMed  Google Scholar 

  • Kuntz DA, Tarling CA, Withers SG, Rose DR (2008) Structural analysis of Golgi alpha-mannosidase II inhibitors identified from a focused glycosidase inhibitor screen. Biochemistry 47:10058–10068

    Article  CAS  PubMed  Google Scholar 

  • Kuntz DA, Zhong W, Guo J, Rose DR, Boons GJ (2009) The molecular basis of inhibition of Golgi alpha-mannosidase II by mannostatin A. Chembiochem 10:268–277

    Article  CAS  PubMed  Google Scholar 

  • Kuntz DA, Nakayama S, Shea K, Hori H, Uto Y, Nagasawa H, Rose DR (2010) Structural investigation of the binding of 5-substituted swainsonine analogues to Golgi alpha-mannosidase II. Chembiochem 11:673–680

    Article  CAS  PubMed  Google Scholar 

  • Lal A, Pang P, Kalelkar S, Romero PA, Herscovics A, Moremen KW (1998) Substrate specificities of recombinant murine Golgi α1,2-mannosidases IA and IB and comparison with endoplasmic reticulum and Golgi processing α1,2-mannosidases. Glycobiology 8:981–995

    Article  CAS  PubMed  Google Scholar 

  • Li B, Kawatkar SP, George S, Strachan H, Woods RJ, Siriwardena A, Moremen KW, Boons GJ (2004) Inhibition of Golgi mannosidase II with mannostatin A analogues: synthesis, biological evaluation, and structure-activity relationship studies. Chembiochem 5:1220–1227

    Article  CAS  PubMed  Google Scholar 

  • Liao Y-F, Lal A, Moremen KW (1996) Cloning, expression, purification, and characterization of the human broad specificity Lysosomal Acid α-Mannosidase. J Biol Chem 271:28348–28358

    Article  CAS  PubMed  Google Scholar 

  • Matsuura F, Nunez HA, Grabowski GA, Sweeley CC (1981) Structural studies of urinary oligosaccharides from patients with mannosidosis. Arch Biochem Biophys 207:337–352

    Article  CAS  PubMed  Google Scholar 

  • Metzler M, Gertz A, Sarkar M, Schachter H, Schrader JW, Marth JD (1994) Complex asparagine-linked oligosaccharides are required for morphogenic events during post-implantation development. EMBO J 13:2056–2065

    CAS  PubMed  Google Scholar 

  • Misago M, Liao Y, Kudo S, Eto S, Mattei M, Moremen K, Fukuda M (1995) Molecular cloning and expression of cDNAs encoding human α-mannosidase II and a previously unrecognized α-mannosidase IIx isozyme. Proc Natl Acad Sci USA 92:11766–11770

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moremen KW (1989) Isolation of a rat liver Golgi mannosidase II clone by mixed oligonucleotide-primed amplification of cDNA. Proc Natl Acad Sci USA 86:5276–5280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moremen K (2000) a-Mannosidases in Asparagine-linked oligosaccharide processing and catabolism. In: Ernst B, Hart G, Sinay P (eds) Oligosaccharides in chemistry and biology: a comprehensive handbook, vol. II: biology of Saccharides, part 1: biosynthesis of Glycoconjugates. Wiley, New York, pp 81–117, Vol II

    Google Scholar 

  • Moremen KW (2002) Golgi alpha-mannosidase II deficiency in vertebrate systems: implications for asparagine-linked oligosaccharide processing in mammals. Biochim Biophys Acta 1573:225–235

    Article  CAS  PubMed  Google Scholar 

  • Moremen KW, Molinari M (2006) N-linked glycan recognition and processing: the molecular basis of endoplasmic reticulum quality control. Curr Opin Struct Biol 16:592–599

    Article  CAS  PubMed  Google Scholar 

  • Moremen KW, Robbins PW (1991) Isolation, characterization, and expression of cDNAs encoding murine α-mannosidase II, a Golgi enzyme that controls conversion of high mannose to complex N-glycans. J Cell Biol 115:1521–1534

    Article  CAS  PubMed  Google Scholar 

  • Moremen KW, Touster O (1988) Mannosidases in mammalian glycoprotein processing. In: Das RC, Robbins PW (eds) Protein transfer and Organelle biogenesis. Academic, San Diego, pp 209–240

    Google Scholar 

  • Moremen KW, Touster O, Robbins PW (1991) Novel purification of the catalytic domain of Golgi alpha-mannosidase II. Characterization and comparison with the intact enzyme. J Biol Chem 266:16876–16885

    CAS  PubMed  Google Scholar 

  • Moremen KW, Trimble RB, Herscovics A (1994) Glycosidases of the asparagine-linked oligosaccharide processing pathway. Glycobiology 4:113–125

    Article  CAS  PubMed  Google Scholar 

  • Moremen KW, Tiemeyer M, Nairn AV (2012) Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol 13:448–462

    Article  CAS  PubMed  Google Scholar 

  • Novikoff PM, Touster O, Novikoff AB, Tulsiani DP (1985) Effects of swainsonine on rat liver and kidney: biochemical and morphological studies. J Cell Biol 101:339–349

    Article  CAS  PubMed  Google Scholar 

  • Numao S, Kuntz DA, Withers SG, Rose DR (2003) Insights into the mechanism of Drosophila melanogaster Golgi alpha-mannosidase II through the structural analysis of covalent reaction intermediates. J Biol Chem 278:48074–48083

    Article  CAS  PubMed  Google Scholar 

  • Palamarczyk G, Mitchell M, Smith PW, Fleet GW, Elbein AD (1985) 1,4-Dideoxy-1,4-imino-d-mannitol inhibits glycoprotein processing and mannosidase. Arch Biochem Biophys 243:35–45

    Article  CAS  PubMed  Google Scholar 

  • Park C, Meng L, Stanton LH, Collins RE, Mast SW, Yi X, Strachan H, Moremen KW (2005) Characterization of a human core-specific lysosomal alpha1,6-mannosidase involved in N-glycan catabolism. J Biol Chem 280:37204–37216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paulson JC, Colley KJ (1989) Glycosyltransferases : structure, localization, and control of cell type-specific glycosylation. J Biol Chem 264:17615–17618

    CAS  PubMed  Google Scholar 

  • Rabouille C, Kuntz DA, Lockyer A, Watson R, Signorelli T, Rose DR, van den Heuvel M, Roberts DB (1999) The Drosophila GMII gene encodes a Golgi alpha-mannosidase II. J Cell Sci 112:3319–3330

    CAS  PubMed  Google Scholar 

  • Rose DR (2012) Structure, mechanism and inhibition of Golgi alpha-mannosidase II. Curr Opin Struct Biol 22:558–562

    Article  CAS  PubMed  Google Scholar 

  • Roth J, Zuber C, Park S, Jang I, Lee Y, Kysela KG, Le Fourn V, Santimaria R, Guhl B, Cho JW (2010) Protein N-glycosylation, protein folding, and protein quality control. Mol Cells 30:497–506

    Article  CAS  PubMed  Google Scholar 

  • Schachter H (1991) The ‘yellow brick road’ to branched complex N-glycans. Glycobiology 1:453–461

    Article  CAS  PubMed  Google Scholar 

  • Schachter H (2000) The joys of HexNAc. The synthesis and function of N- and O-glycan branches. Glycoconj J 17:465–483

    Article  CAS  PubMed  Google Scholar 

  • Schwarz K, Iolascon A, Verissimo F, Trede NS, Horsley W, Chen W, Paw BH, Hopfner KP, Holzmann K, Russo R, Esposito MR, Spano D, De Falco L, Heinrich K, Joggerst B, Rojewski MT, Perrotta S, Denecke J, Pannicke U, Delaunay J, Pepperkok R, Heimpel H (2009) Mutations affecting the secretory COPII coat component SEC23B cause congenital dyserythropoietic anemia type II. Nat Genet 41:936–940

    Article  CAS  PubMed  Google Scholar 

  • Shah N, Kuntz DA, Rose DR (2008) Golgi alpha-mannosidase II cleaves two sugars sequentially in the same catalytic site. Proc Natl Acad Sci USA 105:9570–9575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shaheen PE, Stadler W, Elson P, Knox J, Winquist E, Bukowski RM (2005) Phase II study of the efficacy and safety of oral GD0039 in patients with locally advanced or metastatic renal cell carcinoma. Invest New Drugs 23:577–581

    Article  CAS  PubMed  Google Scholar 

  • Siriwardena A, Strachan H, El-Daher S, Way G, Winchester B, Glushka J, Moremen K, Boons GJ (2005) Potent and selective inhibition of class II alpha-d-mannosidase activity by a bicyclic sulfonium salt. Chembiochem 6:845–848

    Article  CAS  PubMed  Google Scholar 

  • Suits MD, Zhu Y, Taylor EJ, Walton J, Zechel DL, Gilbert HJ, Davies GJ (2010) Structure and kinetic investigation of Streptococcus pyogenes family GH38 alpha-mannosidase. PLoS One 5:e9006

    Article  PubMed Central  PubMed  Google Scholar 

  • Tabas I, Kornfeld S (1978) The synthesis of complex-type oligosaccharides. III. Identification of an a-d-mannosidase activity involved in a late stage of processing of complex-type oligosaccharides. J Biol Chem 253:7779–7786

    CAS  PubMed  Google Scholar 

  • Tabas I, Schlesinger S, Kornfeld S (1978) Processing of high mannose oligosaccharides to form complex type oligosaccharides on the newly synthesized polypeptides of the vesicular stomatitis virus G protein and the IgG heavy chain. J Biol Chem 253:716–722

    CAS  PubMed  Google Scholar 

  • Tropea JE, Kaushal GP, Pastuszak I, Mitchell M, Aoyagi T, Molyneux RJ, Elbein AD (1990) Mannostatin A, a new glycoprotein-processing inhibitor. Biochemistry 29:10062–10069

    Article  CAS  PubMed  Google Scholar 

  • Tulsiani DR, Touster O (1983) Swainsonine, a potent mannosidase inhibitor, elevates rat liver and brain lysosomal alpha-d-mannosidase, decreases Golgi alpha-d-mannosidase II, and increases the plasma levels of several acid hydrolases. Arch Biochem Biophys 224:594–600

    Article  CAS  PubMed  Google Scholar 

  • Tulsiani DR, Opheim DJ, Touster O (1977) Purification and characterization of α-d-mannosidase from rat liver golgi membranes. J Biol Chem 252:3227–3233

    CAS  PubMed  Google Scholar 

  • Tulsiani DR, Harris TM, Touster O (1982a) Swainsonine inhibits the biosynthesis of complex glycoproteins by inhibition of Golgi mannosidase II. J Biol Chem 257:7936–7939

    CAS  PubMed  Google Scholar 

  • Tulsiani DR, Hubbard SC, Robbins PW, Touster O (1982b) α-d-Mannosidases of rat liver Golgi membranes. Mannosidase II is the GlcNAcMAN5-cleaving enzyme in glycoprotein biosynthesis and mannosidases Ia and IB are the enzymes converting Man9 precursors to Man5 intermediates. J Biol Chem 257:3660–3668

    CAS  PubMed  Google Scholar 

  • Tulsiani DR, Broquist HP, James LF, Touster O (1984) The similar effects of swainsonine and locoweed on tissue glycosidases and oligosaccharides of the pig indicate that the alkaloid is the principal toxin responsible for the induction of locoism. Arch Biochem Biophys 232:76–85

    Article  CAS  PubMed  Google Scholar 

  • van den Elsen JM, Kuntz DA, Rose DR (2001) Structure of Golgi alpha-mannosidase II: a target for inhibition of growth and metastasis of cancer cells. EMBO J 20:3008–3017

    Article  PubMed  Google Scholar 

  • Varki A (1993) Biological roles Of Oligosaccharides – all of the theories are correct. Glycobiology 3:97–130

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Tan J, Sutton-Smith M, Ditto D, Panico M, Campbell RM, Varki NM, Long JM, Jaeken J, Levinson SR, Wynshaw-Boris A, Morris HR, Le D, Dell A, Schachter H, Marth JD (2001) Modeling human congenital disorder of glycosylation type IIa in the mouse: conservation of asparagine-linked glycan-dependent functions in mammalian physiology and insights into disease pathogenesis. Glycobiology 11:1051–1070

    Article  CAS  PubMed  Google Scholar 

  • Wen X, Yuan Y, Kuntz DA, Rose DR, Pinto BM (2005) A combined STD-NMR/molecular modeling protocol for predicting the binding modes of the glycosidase inhibitors kifunensine and salacinol to Golgi alpha-mannosidase II. Biochemistry 44:6729–6737

    Article  CAS  PubMed  Google Scholar 

  • Zhong W, Kuntz DA, Ember B, Singh H, Moremen KW, Rose DR, Boons GJ (2008) Probing the substrate specificity of Golgi alpha-mannosidase II by use of synthetic oligosaccharides and a catalytic nucleophile mutant. J Am Chem Soc 130:8975–8983

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelley W. Moremen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this entry

Cite this entry

Moremen, K.W., Nairn, A.V. (2014). Mannosidase, Alpha, Class 2a1 (MAN2A1, Golgi α-Mannosidase II). In: Taniguchi, N., Honke, K., Fukuda, M., Narimatsu, H., Yamaguchi, Y., Angata, T. (eds) Handbook of Glycosyltransferases and Related Genes. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54240-7_85

Download citation

Publish with us

Policies and ethics