Skip to main content

Mannosidase, Alpha, Class 1 (MAN1A1 (Golgi Alpha-Mannnosidase IA), Man1A2 (Golgi Alpha-Mannosidase IB), MAN1B1(ER Alpha-Mannosidase I), MAN1C1 (Golgi Alpha-Mannosidase IC))

  • Reference work entry
  • First Online:
Handbook of Glycosyltransferases and Related Genes

Abstract

The maturation of N-glycans is initiated within the lumen of the endoplasmic reticulum (ER) immediately after transfer of the oligosaccharide precursor to nascent polypeptide chains (Kornfeld and Kornfeld 1985). These glycan processing steps include the sequential cleavage of three glucose (Glc) residues and four α1,2-mannose (α1,2-Man) residues prior to the addition of a GlcNAc residue and cleavage of the final α1,3-Man and α1,6-Man residues. The resulting GlcNAcMan3GlcNAc2-Asn core structure is then extended in the Golgi complex into complex type oligosaccharides (Fig. 115.1). The Glc residues are cleaved by a pair of endoplasmic reticulum (ER) resident glucosidases (MOGS and the heterodimeric GANAB/PRKCSH), and the α1,2-Man residues are removed by a family of α1,2-mannosidases that reside in the ER and Golgi complex. The α1,2-mannosidases are comprised of seven related gene products (Mast et al. 2005; Mast and Moremen 2006; Moremen and Molinari 2006). These enzymes are members of CAZy glycosylhydrolase family 47 (GH47) (Coutinho et al. 2003) and can be distinguished from the later acting α1,3-/α1,6-mannosidases in the Golgi complex, lysosomes, and cytosol (GH38 enzymes) by differences in sequence, protein structural domains, enzymatic characteristics, inhibitor profiles, and catalytic mechanisms (Moremen 2000; Moremen and Molinari 2006; Moremen and Touster 1988; Moremen et al. 1994). This chapter is focused on the N-glycan processing enzymes, ER α-mannosidase I (MAN1B1), and three Golgi α1,2-mannosidases (Golgi α-mannosidase IA (MAN1A1), Golgi α-mannosidase IB (MAN1A2), and Golgi α-mannosidase IC (MAN1C1)). Brief mention of the related EDEM proteins (EDEM1, EDEM2, and EDEM3) is made for comparison, as these ER-resident proteins are thought to play roles in targeting of misfolded proteins for ER-associated degradation (ERAD) rather than processing of glycoproteins for maturation to complex type structures within the secretory pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atkinson PH, Lee JT (1984) Co-translational excision of a-glucose and α-mannose in nascent vesicular stomatitis virus G protein. J Cell Biol 98:2245–2249

    Article  CAS  PubMed  Google Scholar 

  • Bause E, Breuer W, Schweden J, Roeser R, Geyer R (1992) Effect of substrate structure on the activity of Man9-mannosidase from pig liver involved in N-linked oligosaccharide processing. Eur J Biochem 208:451–457

    Article  CAS  PubMed  Google Scholar 

  • Bause E, Bieberich E, Rolfs A, Volker C, Schmidt B (1993) Molecular cloning and primary structure of Man9-mannosidase from human kidney. Eur J Biochem 217:535–540

    Article  CAS  PubMed  Google Scholar 

  • Bieberich E, Bause E (1995) Man9-mannosidase from human kidney is expressed in COS cells as a Golgi- resident type II transmembrane N-glycoprotein. Eur J Biochem 233:644–649

    Article  CAS  PubMed  Google Scholar 

  • Bieberich E, Treml K, Volker C, Rolfs A, Kalz-Fuller B, Bause E (1997) Man9-mannosidase from pig liver is a type-II membrane protein that resides in the endoplasmic reticulum. cDNA cloning and expression of the enzyme in COS 1 cells. Eur J Biochem 246:681–689

    Article  CAS  PubMed  Google Scholar 

  • Burke J, Lipari F, Igdoura S, Herscovics A (1996) The Saccharomyces cerevisiae processing α1,2-mannosidase is localized in the endoplasmic reticulum, independently of known retrieval motifs. Eur J Cell Biol 70:298–305

    CAS  PubMed  Google Scholar 

  • Byrd JC, Tarentino AL, Maley F, Atkinson PH, Trimble RB (1982) Glycoprotein synthesis in yeast. Identification of Man8GlcNAc2 as an essential intermediate in oligosaccharide processing. J Biol Chem 257:14657–14666

    CAS  PubMed  Google Scholar 

  • Camirand A, Heysen A, Grondin B, Herscovics A (1991) Glycoprotein biosynthesis in Saccharomyces cerevisiae. Isolation and characterization of the gene encoding a specific processing α-mannosidase. J Biol Chem 266:15120–15127

    CAS  PubMed  Google Scholar 

  • Clerc S, Hirsch C, Oggier DM, Deprez P, Jakob C, Sommer T, Aebi M (2009) Htm1 protein generates the N-glycan signal for glycoprotein degradation in the endoplasmic reticulum. J Cell Biol 184:159–172

    Article  CAS  PubMed  Google Scholar 

  • Coutinho PM, Deleury E, Davies GJ, Henrissat B (2003) An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 328:307–317

    Article  CAS  PubMed  Google Scholar 

  • Forsee WT, Schutzbach JS (1983) Interaction of α-1,2-mannosidase with anionic phospholipids. Eur J Biochem 136:577–582

    Article  CAS  PubMed  Google Scholar 

  • Forsee WT, Jensen JW, Schutzbach JS (1982) Reconstitution and modulation of an α-Mannosidase by phospholipids. Biophys J 37:98–99

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Forsee WT, Palmer CF, Schutzbach JS (1989) Purification and characterization of an α-1,2-mannosidase involved in processing asparagine-linked oligosaccharides. J Biol Chem 264:3869–3876

    CAS  PubMed  Google Scholar 

  • Gabel CA, Bergmann JE (1985) Processing of the asparagine-linked oligosaccharides of secreted and intracellular forms of the vesicular stomatitis virus G protein: in vivo evidence of Golgi apparatus compartmentalization. J Cell Biol 101:460–469

    Article  CAS  PubMed  Google Scholar 

  • Gauss R, Kanehara K, Carvalho P, Ng DT, Aebi M (2011) A complex of Pdi1p and the mannosidase Htm1p initiates clearance of unfolded glycoproteins from the endoplasmic reticulum. Mol Cell 42:782–793

    Article  CAS  PubMed  Google Scholar 

  • Godelaine D, Spiro MJ, Spiro RG (1981) Processing of the carbohydrate units of thyroglobulin. J Biol Chem 256:10161–10168

    CAS  PubMed  Google Scholar 

  • Gonzalez DS, Karaveg K, Vandersall-Nairn AS, Lal A, Moremen KW (1999) Identification, expression, and characterization of a cDNA encoding human ER mannosidase I, the enzyme that catalyzes the first mannose trimming step in mammalian Asn-linked oligosaccharide biosynthesis. J Biol Chem 274:21375–21386

    Article  CAS  PubMed  Google Scholar 

  • Grondin B, Herscovics A (1992) Topology of ER processing α-mannosidase of Saccharomyces cerevisiae. Glycobiology 2:369–372

    Article  CAS  PubMed  Google Scholar 

  • Hakimi J, Atkinson PH (1982) Glycosylation of intracellular Sindbis virus glycoproteins. Biochemistry 21:2140–2145

    Article  CAS  PubMed  Google Scholar 

  • Hebert DN, Molinari M (2007) In and out of the ER: protein folding, quality control, degradation, and related human diseases. Physiol Rev 87:1377–1408

    Article  CAS  PubMed  Google Scholar 

  • Hebert DN, Molinari M (2012) Flagging and docking: dual roles for N-glycans in protein quality control and cellular proteostasis. Trends Biochem Sci 37:404–410

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hebert DN, Garman SC, Molinari M (2005) The glycan code of the endoplasmic reticulum: asparagine-linked carbohydrates as protein maturation and quality-control tags. Trends Cell Biol 15:364–370

    Article  CAS  PubMed  Google Scholar 

  • Herscovics A (1999a) Glycosidases of the asparagine-linked oligosaccharide processing pathway. In: Pinto BM (ed) Comprehensive natural products chemistry, vol 3. Elsevier, New York, pp 13–35

    Chapter  Google Scholar 

  • Herscovics A (1999b) Processing glycosidases of Saccharomyces cerevisiae. Biochim Biophys Acta 1426:275–285

    Article  CAS  PubMed  Google Scholar 

  • Herscovics A (2001) Structure and function of Class I α1,2-mannosidases involved in glycoprotein synthesis and endoplasmic reticulum quality control. Biochimie 83:757–762

    Article  CAS  PubMed  Google Scholar 

  • Herscovics A, Jelinek-Kelly S (1987) A rapid method for assay of glycosidases involved in glycoprotein biosynthesis. Anal Biochem 166:85–89

    Article  CAS  PubMed  Google Scholar 

  • Herscovics A, Orlean P (1993) Glycoprotein biosynthesis in yeast. FASEB J 7:540–550

    CAS  PubMed  Google Scholar 

  • Herscovics A, Schneikert J, Athanassiadis A, Moremen KW (1994) Isolation of a mouse Golgi mannosidase cDNA, a member of a gene family conserved from yeast to mammals. J Biol Chem 269:9864–9871

    CAS  PubMed  Google Scholar 

  • Herscovics A, Romero PA, Tremblay LO (2002) The specificity of the yeast and human class I ER α1,2-mannosidases involved in ER quality control is not as strict previously reported. Glycobiology 12:14G–15G

    CAS  PubMed  Google Scholar 

  • Hickman S, Theodorakis JL, Greco JM, Brown PH (1984) Processing of MOPC 315 immunoglobulin A oligosaccharides: evidence for endoplasmic reticulum and trans Golgi α1,2-mannosidase activity. J Cell Biol 98:407–416

    Article  CAS  PubMed  Google Scholar 

  • Igdoural SA, Herscovics A, Lal A, Moremen KW, Morales CR, Hermo L (1999) α-Mannosidases involved in N-glycan processing show cell specificity and distinct subcompartmentalization within the Golgi apparatus of cells in the testis and epididymis. Eur J Cell Biol 78:441–452

    Article  Google Scholar 

  • Jelinek-Kelly S, Herscovics A (1988) Glycoprotein biosynthesis in Saccharomyces cerevisiae. Purification of the α-mannosidase which removes one specific mannose residue from Man9GlcNAc. J Biol Chem 263:14757–14763

    CAS  PubMed  Google Scholar 

  • Jelinek-Kelly S, Akiyama T, Saunier B, Tkacz JS, Herscovics A (1985) Characterization of a specific α-mannosidase involved in oligosaccharide processing in Saccharomyces cerevisiae. J Biol Chem 260:2253–2257

    CAS  PubMed  Google Scholar 

  • Karaveg K, Moremen KW (2005) Energetics of substrate binding and catalysis by class 1 (glycosylhydrolase family 47) α-mannosidases involved in N-glycan processing and endoplasmic reticulum quality control. J Biol Chem 280:29837–29848

    Article  CAS  PubMed  Google Scholar 

  • Karaveg K, Siriwardena A, Tempel W, Liu ZJ, Glushka J, Wang BC, Moremen KW (2005) Mechanism of class 1 (glycosylhydrolase family 47) α-mannosidases involved in N-glycan processing and endoplasmic reticulum quality control. J Biol Chem 280:16197–16207

    Article  CAS  PubMed  Google Scholar 

  • Kedersha NL, Tkacz JS, Berg RA (1985) Characterization of the oligosaccharides of prolyl hydroxylase, a microsomal glycoprotein. Biochemistry 24:5952–5960

    Article  CAS  PubMed  Google Scholar 

  • Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–664

    Article  CAS  PubMed  Google Scholar 

  • Lal A, Schutzbach JS, Forsee WT, Neame PJ, Moremen KW (1994) Isolation and expression of murine and rabbit cDNAs encoding an α1,2-mannosidase involved in the processing of asparagine-linked oligosaccharides. J Biol Chem 269:9872–9881

    CAS  PubMed  Google Scholar 

  • Lal A, Pang P, Kalelkar S, Romero PA, Herscovics A, Moremen KW (1998) Substrate specificities of recombinant murine Golgi α1, 2- mannosidases IA and IB and comparison with endoplasmic reticulum and Golgi processing α1,2-mannosidases. Glycobiology 8:981–995

    Article  CAS  PubMed  Google Scholar 

  • Leitman J, Ron E, Ogen-Shtern N, Lederkremer GZ (2013) Compartmentalization of endoplasmic reticulum quality control and ER-associated degradation factors. DNA Cell Biol 32:2–7

    Article  CAS  PubMed  Google Scholar 

  • Lipari F, Herscovics A (1994) Production, purification and characterization of recombinant yeast processing α1,2-mannosidase. Glycobiology 4:697–702

    Article  CAS  PubMed  Google Scholar 

  • Lipari F, Herscovics A (1999) Calcium binding to the class I α-1,2-mannosidase from Saccharomyces cerevisiae occurs outside the EF hand motif. Biochemistry 38:1111–1118

    Article  CAS  PubMed  Google Scholar 

  • Lipari F, Gour-Salin BJ, Herscovics A (1995) The Saccharomyces cerevisiae processing α1,2-mannosidase is an inverting glycosidase. Biochem Biophys Res Commun 209:322–326

    Article  CAS  PubMed  Google Scholar 

  • Liscum L, Cummings RD, Anderson RG, DeMartino GN, Goldstein JL, Brown MS (1983) 3-Hydroxy-3-methylglutaryl-CoA reductase: a transmembrane glycoprotein of the endoplasmic reticulum with N-linked “high-mannose” oligosaccharides. Proc Natl Acad Sci USA 80:7165–7169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mast SW, Moremen KW (2006) Family 47 α-mannosidases in N-glycan processing. Methods Enzymol 415:31–46

    Article  CAS  PubMed  Google Scholar 

  • Mast SW, Diekman K, Karaveg K, Davis A, Sifers RN, Moremen KW (2005) Human EDEM2, a novel homolog of family 47 glycosidases, is involved in ER-associated degradation of glycoproteins. Glycobiology 15:421–436

    Article  CAS  PubMed  Google Scholar 

  • Moremen K (2000) α-Mannosidases in Asparagine-linked oligosaccharide processing and catabolism. In: Ernst B, Hart G, Sinay P (eds) Oligosaccharides in chemistry and biology: a comprehensive handbook, Vol. II: biology of saccharides, Part 1: biosynthesis of glycoconjugates. Wiley, New York, pp 81–117, Vol II

    Google Scholar 

  • Moremen KW, Molinari M (2006) N-linked glycan recognition and processing: the molecular basis of endoplasmic reticulum quality control. Curr Opin Struct Biol 16:592–599

    Article  CAS  PubMed  Google Scholar 

  • Moremen KW, Touster O (1988) Mannosidases in mammalian glycoprotein processing. In: Das RC, Robbins PW (eds) Protein transfer and organelle biogenesis. Academic, San Diego, pp 209–240

    Google Scholar 

  • Moremen KW, Trimble RB, Herscovics A (1994) Glycosidases of the asparagine-linked oligosaccharide processing pathway. Glycobiology 4:113–125

    Article  CAS  PubMed  Google Scholar 

  • Pan S, Wang S, Utama B, Huang L, Blok N, Estes MK, Moremen KW, Sifers RN (2011) Golgi localization of ERManI defines spatial separation of the mammalian glycoprotein quality control system. Mol Biol Cell 22:2810–2822

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paulson JC, Colley KJ (1989) Glycosyltransferases : structure, localization, and control of cell type-specific glycosylation. J Biol Chem 264:17615–17618

    CAS  PubMed  Google Scholar 

  • Rafiq MA, Kuss AW, Puettmann L, Noor A, Ramiah A, Ali G, Hu H, Kerio NA, Xiang Y, Garshasbi M, Khan MA, Ishak GE, Weksberg R, Ullmann R, Tzschach A, Kahrizi K, Mahmood K, Naeem F, Ayub M, Moremen KW, Vincent JB, Ropers HH, Ansar M, Najmabadi H (2011) Mutations in the α1,2-mannosidase gene, MAN1B1, cause autosomal-recessive intellectual disability. Am J Hum Genet 89:176–182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rosenfeld MG, Marcantonio EE, Hakimi J, Ort VM, Atkinson PH, Sabatini D, Kreibich G (1984) Biosynthesis and processing of ribophorins in the endoplasmic reticulum. J Cell Biol 99:1076–1082

    Article  CAS  PubMed  Google Scholar 

  • Roth J, Brada D, Lackie PM, Schweden J, Bause E (1990) Oligosaccharide trimming Man9-mannosidase is a resident ER protein and exhibits a more restricted and local distribution than glucosidase II. Eur J Cell Biol 53:131–141

    CAS  PubMed  Google Scholar 

  • Schutzbach JS, Forsee WT (1990) Calcium ion activation of rabbit liver α1,2-mannosidase. J Biol Chem 265:2546–2549

    CAS  PubMed  Google Scholar 

  • Tempel W, Karaveg K, Liu ZJ, Rose J, Wang BC, Moremen KW (2004) Structure of mouse Golgia-mannosidase IA reveals the molecular basis for substrate specificity among class 1 (family 47 glycosylhydrolase) α1,2-mannosidases. J Biol Chem 279:29774–29786

    Article  CAS  PubMed  Google Scholar 

  • Tremblay LO, Herscovics A (2000) Characterization of a cDNA encoding a novel human Golgi α1, 2-mannosidase (IC) involved in N-glycan biosynthesis. J Biol Chem 275:31655–31660

    Article  CAS  PubMed  Google Scholar 

  • Tremblay LO, Campbell Dyke N, Herscovics A (1998) Molecular cloning, chromosomal mapping and tissue-specific expression of a novel human α1,2-mannosidase gene involved in N-glycan maturation. Glycobiology 8:585–595

    Article  CAS  PubMed  Google Scholar 

  • Tremblay LO, Nagy Kovacs E, Daniels E, Wong NK, Sutton-Smith M, Morris HR, Dell A, Marcinkiewicz E, Seidah NG, McKerlie C, Herscovics A (2007) Respiratory distress and neonatal lethality in mice lacking Golgi α1,2-mannosidase IB involved in N-glycan maturation. J Biol Chem 282:2558–2566

    Article  CAS  PubMed  Google Scholar 

  • Tulsiani DR, Touster O (1988) The purification and characterization of mannosidase IA from rat liver Golgi membranes. J Biol Chem 263:5408–5417

    CAS  PubMed  Google Scholar 

  • Tulsiani DR, Hubbard SC, Robbins PW, Touster O (1982) α-d-Mannosidases of rat liver Golgi membranes. Mannosidase II is the GlcNAcMan5-cleaving enzyme in glycoprotein biosynthesis and mannosidases Ia and IB are the enzymes converting Man9 precursors to Man5 intermediates. J Biol Chem 257:3660–3668

    CAS  PubMed  Google Scholar 

  • Vallee F, Karaveg K, Herscovics A, Moremen KW, Howell PL (2000a) Structural basis for catalysis and inhibition of N-glycan processing class I α1,2-mannosidases. J Biol Chem 275:41287–41298

    Article  CAS  PubMed  Google Scholar 

  • Vallee F, Lipari F, Yip P, Sleno B, Herscovics A, Howell PL (2000b) Crystal structure of a class I α1,2-mannosidase involved in N-glycan processing and endoplasmic reticulum quality control. EMBO J 19:581–588

    Article  CAS  PubMed  Google Scholar 

  • Velasco A, Hendricks L, Moremen KW, Tulsiani DRP, Touster O, Farquhar MG (1993) Cell type-dependent variations in the subcellular distribution of α-mannosidase I and II. J Cell Biol 122:39–51

    Article  CAS  PubMed  Google Scholar 

  • Ziegler FD, Trimble RB (1991) Glycoprotein biosynthesis in yeast: purification and characterization of the endoplasmic reticulum Man9 processing a-mannosidase. Glycobiology 1:605–614

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelley W. Moremen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this entry

Cite this entry

Moremen, K.W., Nairn, A.V. (2014). Mannosidase, Alpha, Class 1 (MAN1A1 (Golgi Alpha-Mannnosidase IA), Man1A2 (Golgi Alpha-Mannosidase IB), MAN1B1(ER Alpha-Mannosidase I), MAN1C1 (Golgi Alpha-Mannosidase IC)). In: Taniguchi, N., Honke, K., Fukuda, M., Narimatsu, H., Yamaguchi, Y., Angata, T. (eds) Handbook of Glycosyltransferases and Related Genes. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54240-7_84

Download citation

Publish with us

Policies and ethics